Dan Segal Explained
Daniel Segal (born 1947)[1] is a British mathematician and a Professor of Mathematics at the University of Oxford. He specialises in algebra and group theory.
He studied at Peterhouse, Cambridge, before taking a PhD at Queen Mary College, University of London, in 1972, supervised by Bertram Wehrfritz, with a dissertation on group theory entitled Groups of Automorphisms of Infinite Soluble Groups. He is an Emeritus Fellow of All Souls College at Oxford, where he was sub-warden from 2006 to 2008.[2] [3]
His postgraduate students have included Marcus du Sautoy and Geoff Smith. He is the son of psychoanalyst Hanna Segal and brother of philosopher Gabriel Segal as well as Michael Segal, a senior civil servant.
Publications
Articles
- 10.1007/BF01393692. Subgroups of finite index in nilpotent groups. 1988. Grunewald. Fritz. Smith. Geoff. Segal. Dan. 2. Inventiones Mathematicae. 93. 185–223. 122967621 .
- Segal, Dan. 2. Decidable properties of polycyclic groups. Proceedings of the London Mathematical Society. 3. 3. 1990. 497–528. 10.1112/plms/s3-61.3.497. 10.1.1.137.5279.
- 10.1007/BF02808118. Finitely generated groups of polynomial subgroup growth. 1993. Lubotzky. Alexander. Mann. Avinoam. Segal. Dan. 2. Israel Journal of Mathematics. 82. 1–3. 363–371.
- 10.1112/S002461150001234X. Closed Subgroups of Profinite Groups. 2000. Segal. Dan. 2. Proceedings of the London Mathematical Society. 81. 29–54. 121333800 .
- 10.1112/plms/82.3.597. The finite images of finitely generated groups. 2001. Segal. Dan. 2. Proceedings of the London Mathematical Society. 82. 3. 597–613. 123105757 .
- 10.1016/S1631-073X(03)00349-2. Finite index subgroups in profinite groups. 2003. Nikolov. Nikolay. Segal. Dan. 2. Comptes Rendus Mathematique. 337. 5. 303–308.
- 10.1515/crll.2004.023. On the integer solutions of quadratic equations. 2004. Grunewald. Fritz. Segal. Dan. 2. Journal für die Reine und Angewandte Mathematik. 2004. 569. 13–45.
- 20160026. Nikolov. Nikolay. Segal. Dan. 2. On Finitely Generated Profinite Groups, I: Strong Completeness and Uniform Bounds. Annals of Mathematics. 2007. 165. 1. 171–238. 10.4007/annals.2007.165.171. free. math/0604399.
- 20160027. Nikolov. Nikolay. Segal. Dan. 2. On Finitely Generated Profinite Groups, II: Products in Quasisimple Groups. Annals of Mathematics. 2007. 165. 1. 239–273. 10.4007/annals.2007.165.239. free. math/0604400.
- 10.1007/s00222-012-0383-6. Generators and commutators in finite groups; abstract quotients of compact groups. 2012. Nikolov. Nikolay. Segal. Dan. 2. Inventiones Mathematicae. 190. 3. 513–602. 1102.3037 . 253746772 .
- 10.4171/JEMS/1255. Segal, Dan. 2. Tent, Katrin. Defining R and G(R). Journal of the European Mathematical Society. 2022. 216562690 . free.
Books
- Polycyclic Groups, Cambridge University Press 1983; 2005 pbk edition
- with J. Dixon, M. Du Sautoy, A. Mann Analytic pro-p-groups, Cambridge University Press 1999,[4] Paperback edn. 2003
- ed. with M. Du Sautoy, A. Shalev New horizons in pro-p-groups, Birkhäuser 2000[4] Paperback edn. 2012
- with Alexander Lubotzky Subgroup growth, Birkhäuser 2003[5] Paperback edn. 2012
- Words: notes on verbal width in groups, London Mathematical Society Lecture Notes, vol. 361, Cambridge University Press 2009[6]
Notes and References
- http://www.science.unitn.it/~caranti/Conferences/PAGT2007/ 2007 website for a mathematical conference held on the 60th birthday of Dan Segal
- Web site: Professor Daniel Segal, sub-warden . 18 October 2012 . 21 April 2015 . https://web.archive.org/web/20150421192137/http://www.all-souls.ox.ac.uk/people.php?personid=62 . dead .
- http://www.maths.ox.ac.uk/people/profiles/dan.segal Homepage in Oxford
- Lubotzky, Alexander. Review of Analytic pro-p-groups, New horizons in pro-p-groups, and two other books. Bull. Amer. Math. Soc. (N.S.). 2001. 38. 4. 475–479. 10.1090/S0273-0979-01-00914-4. free.
- Grigorchuk, Rostislav I.. Rostislav Grigorchuk. Review: Subgroup growth, by Alexander Lubotzky and Dan Segal. Bull. Amer. Math. Soc. (N.S.). 2004. 41. 2. 253–256. 10.1090/s0273-0979-03-01003-6. free.
- Nekrashevych, V.. Review: Words: notes on verbal width in groups, by Dan Segal. Bull. Amer. Math. Soc. (N.S.). 2011. 48. 3. 491–494. 10.1090/s0273-0979-2011-01333-7. free.