Memory module explained

In computing, a memory module or RAM stick is a printed circuit board on which memory integrated circuits are mounted.[1]

Memory modules permit easy installation and replacement in electronic systems, especially computers such as personal computers, workstations, and servers. The first memory modules were proprietary designs that were specific to a model of computer from a specific manufacturer. Later, memory modules were standardized by organizations such as JEDEC and could be used in any system designed to use them.

Distinguishing characteristics of computer memory modules include voltage, capacity, speed (i.e., bit rate), and form factor.

Overview

Types of memory module include:

The large memories found in personal computers, workstations, and non-handheld game-consoles normally consist of dynamic RAM (DRAM). Other parts of the computer, such as cache memories normally use static RAM. Small amounts of SRAM are sometimes used in the same package as DRAM.[2] However, since SRAM has high leakage power and low density, die-stacked DRAM has recently been used for designing multi-megabyte sized processor caches.[3]

Physically, most DRAM is packaged in black epoxy resin.

General DRAM formats

Dynamic random access memory is produced as integrated circuits (ICs) bonded and mounted into plastic packages with metal pins for connection to control signals and buses. In early use individual DRAM ICs were usually either installed directly to the motherboard or on ISA expansion cards; later they were assembled into multi-chip plug-in modules (DIMMs, SIMMs, etc.). Some standard module types are:

Common DRAM modules

Common DRAM packages as illustrated to the right, from top to bottom (last three types are not present in the group picture, and the last type is available in a separate picture), this list is in roughly chronological order:

Common SO-DIMM DRAM modules:

Notes and References

  1. Bruce Jacob, Spencer W. Ng, David T. Wang (2008). Memory Systems: Cache, DRAM, Disk. Morgan Kaufmann Publishers. pp. 417–418.
  2. Web site: 21 July 1998 . Mitsubishi's 3D-RAM And Cache DRAM incorporate high performance, on-board SRAM cache . https://web.archive.org/web/20081224070955/http://findarticles.com/p/articles/mi_m0EIN/is_1998_July_21/ai_50179297 . 24 December 2008 . Business Wire.
  3. S. Mittal et al., "A Survey Of Techniques for Architecting DRAM Caches", IEEE TPDS, 2015