In mathematics, in linear algebra and functional analysis, a cyclic subspace is a certain special subspace of a vector space associated with a vector in the vector space and a linear transformation of the vector space. The cyclic subspace associated with a vector v in a vector space V and a linear transformation T of V is called the T-cyclic subspace generated by v. The concept of a cyclic subspace is a basic component in the formulation of the cyclic decomposition theorem in linear algebra.
Let
T:V → V
V
v
V
T
V
v
Z(v;T)
V
\{v,T(v),T2(v),\ldots,Tr(v),\ldots\}
V
v
T
Z(v;T)
V
Z(v;T)
V
There is another equivalent definition of cyclic spaces. Let
T:V → V
F
v
V
g(T)v
g(x)
F[x]
x
F
T
v
The subspace
Z(v;T)
T
TZ(v;T)\subsetZ(v;T)
V
T
V
T
V
I
I
Z(v;T)
v
T
V
T
V
\begin{bmatrix}0&1\ 0&0\end{bmatrix}
V
v=\begin{bmatrix}0\ 1\end{bmatrix}
Tv=\begin{bmatrix}1\ 0\end{bmatrix}, T2v=0,\ldots,Trv=0,\ldots
\{v,T(v),T2(v),\ldots,Tr(v),\ldots\}=\left\{\begin{bmatrix}0\ 1\end{bmatrix},\begin{bmatrix}1\ 0\end{bmatrix}\right\}
Z(v;T)=V
v
T
Let
T:V → V
n
V
F
v
T
B=\{v1=v,v2=Tv,
2v, | |
v | |
3=T |
\ldotsvn=Tn-1v\}
form an ordered basis for
V
T
p(x)=c0+c1x+c
2+ … | |
2x |
+cn-1xn-1+xn
Then
\begin{align} Tv1&=v2\\ Tv2&=v3\\ Tv3&=v4\\ \vdots&\\ Tvn-1&=vn\\ Tvn&=-c0v1-c1v2- … cn-1vn \end{align}
Therefore, relative to the ordered basis
B
T
\begin{bmatrix}0&0&0& … &0&-c0\\ 1&0&0&\ldots&0&-c1\\ 0&1&0&\ldots&0&-c2\\ \vdots&&&&&\\ 0&0&0&\ldots&1&-cn-1\end{bmatrix}
This matrix is called the companion matrix of the polynomial
p(x)