Cunninghamella elegans explained
Cunninghamella elegans is a species of fungus in the genus Cunninghamella found in soil.[1]
It can be grown in Sabouraud dextrose broth, a liquid medium used for cultivation of yeasts and molds from liquid which are normally sterile.
As opposed to C. bertholletiae, it is not a human pathogen,[2] with the exception of two documented patients.[3]
Description
Cunninghamella elegans is a filamentous fungus that produces purely gray colonies.
Electron microscopy studies show that the conidia are covered with spines.[4]
Use as a fungal organism capable of xenobiotics metabolism
Cunninghamella elegans is able to degrade xenobiotics.[5] It has a variety of enzymes of phases I (modification enzymes acting to introduce reactive and polar groups into their substrates) and II (conjugation enzymes) of the xenobiotic metabolism, as do mammals. Cytochrome P450 monooxygenase, aryl sulfotransferase, glutathione S-transferase, UDP-glucuronosyltransferase, UDP-glucosyltransferase activities have been detected in cytosolic or microsomal fractions.[6]
Cytochrome P-450 and cytochrome P-450 reductase in C. elegans are part of the phase I enzymes. They are induced by the corticosteroid cortexolone and by phenanthrene.[7] C. elegans also possesses a lanosterol 14-alpha demethylase, another enzyme in the cytochrome P450 family.[8]
Cunninghamella elegans also possesses a glutathione S-transferase.[9]
Use as a fungal model organism of mammalian drug metabolism
Cunninghamella elegans is a microbial model of mammalian drug metabolism.[10] [11] [12] [13] The use of this fungus could reduce the over-all need for laboratory animals.[14]
Cunninghamella elegans is able to transform the tricyclic antidepressants amitriptyline[15] and doxepin,[16] the tetracyclic antidepressant mirtazapine,[17] the muscle relaxant cyclobenzaprine,[18] the typical antipsychotic chlorpromazine as well as the antihistamine and anticholinergic methdilazine[19] and azatadine. It is also able to transform the antihistamines brompheniramine, chlorpheniramine and pheniramine.[20]
It forms a glucoside with the diuretic furosemide.[13]
The transformation of oral contraceptive mestranol by C. elegans yields two hydroxylated metabolites, 6beta-hydroxymestranol and 6beta,12beta-dihydroxymestranol.[21]
Metabolism of polycyclic aromatic hydrocarbons
The phase I cytochrome P450 enzyme systems of C. elegans has been implicated in the neutralization of numerous polycyclic aromatic hydrocarbons (PAH).
It can degrade molecules such as anthracene, 7-methylbenz[a]anthracene and 7-hydroxymethylbenz[a]anthracene,[22] phenanthrene,[23] acenaphthene,[24] 1- and 2-methylnaphthalene,[25] naphthalene,[26] fluorene[27] or benzo(a)pyrene.[28]
In the case of phenanthrene, C. elegans produces a glucoside conjugate of 1-hydroxyphenanthrene (phenanthrene 1-O-beta-glucose).[29]
Metabolism of pesticides
Cunninghamella elegans is also able to degrade the herbicides alachlor,[30] metolachlor[31] and isoproturon[32] as well as the fungicide mepanipyrim.[1]
Metabolism of phenolics
Cunninghamella elegans can be used to study the metabolism of phenols. This type of molecules already have reactive and polar groups comprised within their structure therefore phases I enzymes are less active than phase II (conjugation) enzymes.
Metabolism of flavonoids
- FlavonolsIn flavonols, an hydroxyl group is available in the 3- position allowing the glycosylation at that position. The biotransformation of quercetin yields three metabolites, including quercetin 3-O-β-D-glucopyranoside, kaempferol 3-O-β-D-glucopyranoside and isorhamnetin 3-O-β-D-glucopyranoside. Glucosylation and O-methylation are involved in the process.
FlavonesIn flavones, there is no hydroxyl group available at the 3- position. Conjugation, in the form of sulfation occurs at the 7- or 4'- positions. Apigenin and chrysin are also transformed by C. elegans and produce apigenin 7-sulfate, apigenin 7,4′-disulfate, chrysin 7-sulfate.[33]
Sulfation also occurs on naringenin and produces naringenin-7-sulfate.[34]
Glucosylation may nevertheless occur but in 3'- position, as happens during the microbial transformation of psiadiarabin and its 6-desmethoxy analogue, 5,3′ dihydroxy-7,2′,4′,5′-tetramethoxyflavone, by Cunninghamella elegans NRRL 1392 that gives the 3′-glucoside conjugates of the two flavones.[35]
- flavanonesAs in flavones, there is no hydroxyl groups available at the 3- position for glycosylation in flavanones. Therefore, sulfation occurs at the 7- position. In compounds like 7-methoxylated flavanones like 7-O-methylnaringenin (sakuranetin), demethylation followed by sulfation occur.[36]
Metabolism of synthetic phenolics
It is also able to degrade synthetic phenolic compounds like bisphenol A.[37]
Metabolism of heterocyclic organic compounds
Cunninghamella elegans can transform the nitrogen containing compound phthalazine[38] It is also able to oxidize the organosulfur compound dibenzothiophene.[39]
Uses in biotechnology
Methods for efficient C. elegans genomic DNA isolation and transformation have been developed.[40]
The cytochrome P450 of C. elegans has been cloned in Escherichia coli[41] as well as an enolase.[42]
Use in bioconversion
Techniques employed
Cunninghamella elegans can be grown in stirred tank batch bioreactor.[43] Protoplasts cultures have been used.[44]
Examples of uses
Cunninghamella elegans can be used for phenanthrene bioconversion[43] or for steroid transformation.[44] It has been used to produce from 10,11-dimethoxyaporphine,[45] triptoquinone from the synthetic abietane diterpene triptophenolide[46] or for the rational and economical bioconversion of antimalarial drug artemisinin to 7beta-hydroxyartemisinin.[47]
Environmental biotechnology
Cunninghamella elegans has been used in environmental biotechnology for the treatment of textile wastewaters,[48] for instance those discoloured by azo dyes or malachite green.[49]
Chitin[50] and chitosan isolated from C. elegans can be used for heavy metal biosorption. Production can be made on yam bean (Pachyrhizus erosus L. Urban) medium.[51]
Strains
Cunninghamella elegans ATCC 9245[52]
Cunninghamella elegans ATCC 36112[53]
Cunninghamella elegans ATCC 26269[53]
Cunninghamella elegans NRRL 1393[53]
Cunninghamella elegans IFM 46109[54]
Cunninghamella elegans UCP 542[55]
External links
Notes and References
- Zhu . Y. Z. . Keum . Y. S. . Yang . L. . Lee . H. . Park . H. . Kim . J. H. . 10.1021/jf102980y . Metabolism of a Fungicide Mepanipyrim by Soil FungusCunninghamella elegansATCC36112 . Journal of Agricultural and Food Chemistry . 58 . 23 . 12379–12384 . 2010 . 21047134.
- Weitzman . I. . Crist . M. Y. . Studies with clinical isolates of Cunninghamella. I. Mating behavior . Mycologia . 71 . 5 . 1024–1033 . 1979 . 545137. 3759290 . 10.2307/3759290.
- Kwon-Chung . K. J. . Young . R. C. . Orlando . M. . Pulmonary mucormycosis caused by Cunninghamella elegans in a patient with chronic myelogenous leukemia . American Journal of Clinical Pathology . 64 . 4 . 544–548 . 1975 . 1060379. 10.1093/ajcp/64.4.544 .
- Hawker . L. E. . Thomas . B. . Beckett . A. . 10.1099/00221287-60-2-181 . An Electron Microscope Study of Structure and Germination of Conidia of Cunninghamella elegans Lendner . Microbiology . 60 . 2 . 181–189 . 1970 . free .
- Wackett . L. P. . Gibson . D. T. . Metabolism of xenobiotic compounds by enzymes in cell extracts of the fungus Cunninghamella elegans . The Biochemical Journal . 205 . 1 . 117–122 . 1982 . 6812568 . 1158453 . 10.1042/bj2050117.
- Zhang . D. . Yang . Y. . Leakey . J. E. A. . Cerniglia . C. E. . Phase I and phase II enzymes produced byCunninghamella elegansfor the metabolism of xenobiotics . 10.1111/j.1574-6968.1996.tb08161.x . FEMS Microbiology Letters . 138 . 2–3 . 221–226 . 1996 . 9026450. free .
- Lisowska. K.. Szemraj. J.. Rózalska. S.. Długoński. J.. 2006. The expression of cytochrome P-450 and cytochrome P-450 reductase genes in the simultaneous transformation of corticosteroids and phenanthrene byCunninghamella elegans. FEMS Microbiology Letters. 261. 2. 175–180. 10.1111/j.1574-6968.2006.00339.x. 16907717. free.
- https://www.uniprot.org/uniprot/Q9UVC3 Lanosterol 14-alpha demethylase from Cunninghamella elegans on www.uniprot.org
- Cha . C. J. . Kim . S. J. . Kim . Y. H. . Stingley . R. . Cerniglia . C. E. . Molecular cloning, expression and characterization of a novel class glutathione S-transferase from the fungus Cunninghamella elegans . 10.1042/BJ20020400 . Biochemical Journal . 368 . 2 . 589–95 . 2002 . 12196209. 1223007.
- Kristian Björnstad . Anders Helander . Peter Hultén . Olof Beck . 2009 . Bioanalytical investigation of asarone in connection with Acorus calamus oil intoxications . . 33 . 9 . 604–609 . 10.1093/jat/33.9.604 . 20040135. free .
- Joanna D. Moody . Donglu Zhang . Thomas M. Heinze . Carl E. Cerniglia . 2000 . Transformation of amoxapine by Cunninghamella elegans . . 66 . 8 . 3646–3649 . 92200 . 10919836 . 10.1128/AEM.66.8.3646-3649.2000. 2000ApEnM..66.3646M .
- A. Jaworski . L. Sedlaczek . J. Dlugoński . Ewa Zajaczkowska . 1985 . Inducible nature of the steroid 11-hydroxylases in spores of Cunninghamella elegans (Lendner) . . 25 . 7 . 423–427 . 10.1002/jobm.3620250703. 85744435 .
- Hezari . M. . Davis . P. J. . Microbial models of mammalian metabolism. Furosemide glucoside formation using the fungus Cunninghamella elegans . Drug Metabolism and Disposition . 21 . 2 . 259–267 . 1993 . 8097695.
- 10.4103/0250-474X.89750. 3224398. Substitute of animals in drug research: An approach towards fulfillment of 4R′s. 2011. Sharma. KK. Mehta. T. Joshi. V. Mehta. N. Rathor. AK. Mediratta. KD. Sharma. PK. Indian Journal of Pharmaceutical Sciences. 73. 1–6. 22131615. 1 . free .
- Zhang . D. . Evans . F. E. . Freeman . J. P. . Duhart Jr . B. . Cerniglia . C. E. . Biotransformation of amitriptyline by Cunninghamella elegans . Drug Metabolism and Disposition . 23 . 12 . 1417–1425 . 1995 . 8689954.
- Moody . J. D. . Freeman . J. P. . Cerniglia . C. E. . Biotransformation of doxepin by Cunninghamella elegans . Drug Metabolism and Disposition . 27 . 10 . 1157–1164 . 1999 . 10497142.
- Moody . J. D. . Freeman . J. P. . Fu . P. P. . Cerniglia . C. E. . Biotransformation of Mirtazapine by Cunninghamella Elegans . 10.1124/dmd.30.11.1274 . Drug Metabolism and Disposition . 30 . 11 . 1274–1279 . 2002 . 12386135. 8257428 .
- Zhang . D. . Evans . F. E. . Freeman . J. P. . Yang . Y. . Deck . J. . Cerniglia . C. E. . 10.1016/S0009-2797(96)03736-2 . Formation of mammalian metabolites of cyclobenzaprine by the fungus, Cunninghamella elegans . Chemico-Biological Interactions . 102 . 2 . 79–92 . 1996 . 8950223.
- Zhang . D. . Freeman . J. P. . Sutherland . J. B. . Walker . A. E. . Yang . Y. . Cerniglia . C. E. . Biotransformation of chlorpromazine and methdilazine by Cunninghamella elegans . Applied and Environmental Microbiology . 62 . 3 . 798–803 . 1996 . 10.1128/AEM.62.3.798-803.1996 . 8975609 . 167846. 1996ApEnM..62..798Z .
- Hansen . E. B. . Cho . B. P. . Korfmacher . W. A. . Cerniglia . C. E. . Fungal transformations of antihistamines: Metabolism of brompheniramine, chlorpheniramine, and pheniramine to N-oxide and N-demethylated metabolites by the fungus Cunninghamella elegans . 10.3109/00498259509061908 . Xenobiotica . 25 . 10 . 1081–1092 . 1995 . 8578764.
- Choudhary . M. I. . Musharraf . S. G. . Siddiqui . Z. A. . Khan . N. T. . Ali . R. A. . Ur-Rahman . A. . Microbial transformation of mestranol by Cunninghamella elegans . Chemical & Pharmaceutical Bulletin . 53 . 8 . 1011–1013 . 2005 . 16079537 . 10.1248/cpb.53.1011. free .
- Cerniglia . C. E. . Fu . P. P. . Yang . S. K. . Metabolism of 7-methylbenzaanthracene and 7-hydroxymethylbenzaanthracene by Cunninghamella elegans . Applied and Environmental Microbiology . 44 . 3 . 682–689 . 1982 . 10.1128/AEM.44.3.682-689.1982 . 7138006 . 242076.
- Cerniglia . C. E. . Yang . S. K. . Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans . Applied and Environmental Microbiology . 47 . 1 . 119–124 . 1984 . 10.1128/AEM.47.1.119-124.1984 . 6696409 . 239622. 1984ApEnM..47..119C .
- Pothuluri . J. V. . Freeman . J. P. . Evans . F. E. . Cerniglia . C. E. . Fungal metabolism of acenaphthene by Cunninghamella elegans . Applied and Environmental Microbiology . 58 . 11 . 3654–3659 . 1992 . 10.1128/AEM.58.11.3654-3659.1992 . 1482186 . 183157. 1992ApEnM..58.3654P .
- Cerniglia . C. E. . Lambert . K. J. . Miller . D. W. . Freeman . J. P. . Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans . Applied and Environmental Microbiology . 47 . 1 . 111–118 . 1984 . 10.1128/AEM.47.1.111-118.1984 . 6696408 . 239621. 1984ApEnM..47..111C .
- Cerniglia . C. E. . Gibson . D. T. . Metabolism of naphthalene by Cunninghamella elegans . Applied and Environmental Microbiology . 34 . 4 . 363–370 . 1977 . 10.1128/AEM.34.4.363-370.1977 . 921262 . 242664. 1977ApEnM..34..363C .
- Pothuluri . J. V. . Freeman . J. P. . Evans . F. E. . Cerniglia . C. E. . Biotransformation of fluorene by the fungus Cunninghamella elegans . Applied and Environmental Microbiology . 59 . 6 . 1977–1980 . 1993 . 10.1128/AEM.59.6.1977-1980.1993 . 8328814 . 182201. 1993ApEnM..59.1977P .
- Cerniglia . C. E. . Mahaffey . W. . Gibson . D. T. . 10.1016/S0006-291X(80)80210-5 . Fungal oxidation of benzo\a]pyrene: Formation of (−)-trans-7,8-dihydroxy-7,8-dihydrobenzo\a]pyrene by Cunninghamella elegans . Biochemical and Biophysical Research Communications . 94 . 1 . 226–232 . 1980 . 7190014.
- Cerniglia . C. E. . Campbell . W. L. . Freeman . J. P. . Evans . F. E. . Identification of a novel metabolite in phenanthrene metabolism by the fungus Cunninghamella elegans . Applied and Environmental Microbiology . 55 . 9 . 2275–2279 . 1989 . 10.1128/AEM.55.9.2275-2279.1989 . 2802607 . 203068. 1989ApEnM..55.2275C .
- Pothuluri . J. V. . Freeman . J. P. . Evans . F. E. . Moorman . T. B. . Cerniglia . C. E. . Metabolism of alachlor by the fungus Cunninghamella elegans . 10.1021/jf00027a026 . Journal of Agricultural and Food Chemistry . 41 . 3 . 483–488 . 1993 .
- Jairaj V. Pothuluri, Frederick E. Evans . Doerge, D.R. . Churchwell, M.I. . Carl E. Cerniglia . amp. 1997 . Metabolism of metolachlor by the fungus Cunninghamella elegans . Arch. Environ. Contam. Toxicol. . 32 . 117–125 . 10.1007/s002449900163 . 9069185 . 2. 20614148 .
- Hangler . M. . Jensen . B. . Rønhede . S. . Sørensen . S. R. . Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans . 10.1111/j.1574-6968.2006.00599.x . FEMS Microbiology Letters . 268 . 2 . 254–260 . 2007 . 17328751 . free .
- Ibrahim . A. R. S. . Biotransformation of Chrysin and Apigenin by Cunninghamella elegans . 10.1248/cpb.53.671 . Chemical & Pharmaceutical Bulletin . 53 . 6 . 671–672 . 2005 . 15930780. free .
- Abdel-Rahim S. Ibrahim . 2000 . Sulfation of naringenin by Cunninghamella elegans . . 53 . 2 . 209–212 . 10.1016/S0031-9422(99)00487-2 . 10680173. 2000PChem..53..209I .
- Ibrahim . A. R. . Galal . A. M. . Mossa . J. S. . El-Feraly . F. S. . Glucose-conjugation of the flavones of Psiadia arabica by Cunninghamella elegans . Phytochemistry . 46 . 7 . 1193–1195 . 1997 . 9423290 . 10.1016/s0031-9422(97)00421-4.
- 10.1248/cpb.51.203 . Ibrahim . A. R. . Galal . A. M. . Ahmed . M. S. . Mossa . G. S. . O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans . Chemical & Pharmaceutical Bulletin . 51 . 2 . 203–206 . 2003 . 12576658. . free .
- Keum . Y. S. . Lee . H. R. . Park . H. W. . Kim . J. H. . Biodegradation of bisphenol a and its halogenated analogues by Cunninghamella elegans ATCC36112 . 10.1007/s10532-010-9358-8 . Biodegradation . 21 . 6 . 989–997 . 2010 . 20455075. 2259930 .
- Sutherland . John B. . Freeman . James P. . Williams . Anna J. . Deck . Joanna . 1999 . Biotransformation of Phthalazine by Fusarium moniliforme and Cunninghamela elegans . Mycologia . 91 . 1. 114–116 . 3761198 . 10.2307/3761198.
- Crawford . D. L. . Gupta . R. K. . 10.1007/BF02092161 . Oxidation of dibenzothiophene byCunninghamella elegans . Current Microbiology . 21 . 4 . 229–231 . 1990 . 6892038 .
- Zhang . D. . Yang . Y. . Castlebury . L. A. . Cerniglia . C. E. . A method for the large scale isolation of high transformation efficiency fungal genomic DNA . 10.1111/j.1574-6968.1996.tb08587.x . FEMS Microbiology Letters . 145 . 2 . 261–265 . 1996 . 8961565. free .
- Wang . R. F. . Cao . W. W. . Khan . A. A. . Cerniglia . C. E. . Cloning, sequencing, and expression inEscherichia coliof a cytochrome P450 gene from Cunninghamella elegans . 10.1111/j.1574-6968.2000.tb09168.x . FEMS Microbiology Letters . 188 . 1 . 55–61 . 2000 . 10867234. free .
- Wang . R. F. . Khan . A. A. . Cao . W. W. . Cerniglia . C. E. . Cloning, sequencing, and expression of the gene encoding enolase from Cunninghamella elegans . 10.1017/S0953756299001112 . Mycological Research . 104 . 2 . 175–179 . 2000 .
- Lisowska . K. . Bizukojc . M. . Długoński . J. . 10.1016/j.enzmictec.2006.03.039 . An unstructured model for studies on phenanthrene bioconversion by filamentous fungus Cunninghamella elegans . Enzyme and Microbial Technology . 39 . 7 . 1464–1470 . 2006 .
- Długoński . J. . Sedlaczek . L. . Jaworski . A. . 10.1139/m84-010 . Protoplast release from fungi capable of steroid transformation . Canadian Journal of Microbiology . 30 . 1 . 57–62 . 1984 . 6713303. (French)
- Smith . R. V. . Davis . P. J. . Regiospecific synthesis of isoapocodeine from 10,11-dimethoxyaporphine by using Cunninghamella elegans . Applied and Environmental Microbiology . 35 . 4 . 738–742 . 1978 . 10.1128/AEM.35.4.738-742.1978 . 25623 . 242915. 1978ApEnM..35..738S .
- TMilanova . R. . Stoynov . N. . Moore . M. . 10.1016/0141-0229(95)00184-0 . The optimization of triptoquinone production by Cunninghamella elegans using factorial design . Enzyme and Microbial Technology . 19 . 2 . 86–93 . 1996 .
- Parshikov . I. A. . Muraleedharan . K. M. . Avery . M. A. . Williamson . J. S. . Transformation of artemisinin by Cunninghamella elegans . 10.1007/s00253-003-1524-z . Applied Microbiology and Biotechnology . 64 . 6 . 782–786 . 2004 . 14735322 . 6542162 .
- Tigini . V. . Prigione . V. . Donelli . I. . Anastasi . A. . Freddi . G. . Giansanti . P. . Mangiavillano . A. . Varese . G. C. . 10.1007/s00253-010-3010-8 . Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: An analytical and ecotoxicological approach . Applied Microbiology and Biotechnology . 90 . 1 . 343–352 . 2010 . 21127858. 23402412 . 2318/82517 . free .
- Cha . C. -J. . Doerge . D. R. . Cerniglia . C. E. . 10.1128/AEM.67.9.4358-4360.2001 . Biotransformation of Malachite Green by the Fungus Cunninghamella elegans . Applied and Environmental Microbiology . 67 . 9 . 4358–4360 . 2001 . 11526047. 93171 . 2001ApEnM..67.4358C .
- Andrade . V. S. . Neto . B. B. . Souza . W. . Campos-Takaki . G. M. . A factorial design analysis of chitin production byCunninghamella elegans . 10.1139/w00-086 . Canadian Journal of Microbiology . 46 . 11 . 1042–1045 . 2000 . 11109493.
- Montenegro Stamford . T. C. . Montenegro Stamford . T. L. . Pereira Stamford . N. . De Barros Neto . B. . De Campos-Takaki . G. M. . Growth of Cunninghamella elegans UCP 542 and production of chitin and chitosan using yam bean medium . 10.2225/vol10-issue1-fulltext-1 . Electronic Journal of Biotechnology . 10 . 0 . 2007 . 1807/48879 . free .
- Zi . J. . Valiente . J. . Zeng . J. . Zhan . J. . Metabolism of quercetin by Cunninghamella elegans ATCC 9245 . 10.1016/j.jbiosc.2011.06.006 . Journal of Bioscience and Bioengineering . 112 . 4 . 360–362 . 2011 . 21742550.
- Asha S, Vidyavathi M . Cunninghamella - a microbial model for drug metabolism studies - a review . Biotechnol. Adv. . 27 . 1 . 16–29 . 2009 . 18775773 . 10.1016/j.biotechadv.2008.07.005 .
- Franco . L. D. O. . Maia . R. D. C. S. C. . Porto . A. L. C. F. . Messias . A. S. . Fukushima . K. . Campos-Takaki . G. M. D. . 10.1590/S1517-83822004000200013 . Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109) . Brazilian Journal of Microbiology . 35 . 3 . 243–247 . 2004 . free .
- Ambrósio . S. . Campos-Takaki . G. M. . Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions . 10.1016/S0960-8524(03)00153-6 . Bioresource Technology . 91 . 1 . 69–75 . 2004 . 14585623.