Crystal Ball function explained

The Crystal Ball function, named after the Crystal Ball Collaboration (hence the capitalized initial letters), is a probability density function commonly used to model various lossy processes in high-energy physics. It consists of a Gaussian core portion and a power-law low-end tail, below a certain threshold. The function itself and its first derivative are both continuous.

The Crystal Ball function is given by:

f(x;\alpha,n,\barx,\sigma)=N\begin{cases}\exp(-

(x-\barx)2
2\sigma2

),&for

x-\barx
\sigma

>-\alpha\\ A(B-

x-\barx
\sigma

)-n,&for

x-\barx
\sigma

\leqslant-\alpha\end{cases}

where

A=\left(

n
\left|\alpha\right|

\right)n\exp\left(-

\left|\alpha\right|2
2

\right)

,

B=

n
\left|\alpha\right|

-\left|\alpha\right|

,

N=

1
\sigma(C+D)
,

C=

n
\left|\alpha\right|

1
n-1

\exp\left(-

\left|\alpha\right|2
2

\right)

,

D=\sqrt{

\pi
2
} \left(1 + \operatorname\left(\frac\right)\right).

N

(Skwarnicki 1986) is a normalization factor and

\alpha

,

n

,

\barx

and

\sigma

are parameters which are fitted with the data. erf is the error function.

External links