The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.
For two random vectors
X=(X1,\ldots,X
\rmT | |
m) |
Y=(Y1,\ldots,Y
\rmT | |
n) |
X
Y
and has dimensions
m x n
\operatorname{R}XY= \begin{bmatrix} \operatorname{E}[X1Y1]&\operatorname{E}[X1Y2]& … &\operatorname{E}[X1Yn]\ \\ \operatorname{E}[X2Y1]&\operatorname{E}[X2Y2]& … &\operatorname{E}[X2Yn]\ \\ \vdots&\vdots&\ddots&\vdots\ \\ \operatorname{E}[XmY1]&\operatorname{E}[XmY2]& … &\operatorname{E}[XmYn]\ \\ \end{bmatrix}
The random vectors
X
Y
For example, if
X=\left(X1,X2,X3\right)\rm
Y=\left(Y1,Y2\right)\rm
\operatorname{R}XY
3 x 2
(i,j)
\operatorname{E}[XiYj]
If
Z=(Z1,\ldots,Z
\rmT | |
m) |
W=(W1,\ldots,W
\rmT | |
n) |
Z
W
\operatorname{R}ZW\triangleq \operatorname{E}[ZW\rm]
where
{}\rm
Two random vectors
X=(X1,\ldots,X
\rmT | |
m) |
Y=(Y1,\ldots,Y
\rmT | |
n) |
\operatorname{E}[XY\rm]=\operatorname{E}[X]\operatorname{E}[Y]\rm.
They are uncorrelated if and only if their cross-covariance matrix
\operatorname{K}XY
In the case of two complex random vectors
Z
W
\operatorname{E}[ZW\rm]=\operatorname{E}[Z]\operatorname{E}[W]\rm
\operatorname{E}[ZW\rm]=\operatorname{E}[Z]\operatorname{E}[W]\rm.
The cross-correlation is related to the cross-covariance matrix as follows:
\operatorname{K}XY=\operatorname{E}[(X-\operatorname{E}[X])(Y-\operatorname{E}[Y])\rm]=\operatorname{R}XY-\operatorname{E}[X]\operatorname{E}[Y]\rm
Respectively for complex random vectors:
\operatorname{K}ZW=\operatorname{E}[(Z-\operatorname{E}[Z])(W-\operatorname{E}[W])\rm]=\operatorname{R}ZW-\operatorname{E}[Z]\operatorname{E}[W]\rm