Cirsium arvense explained

Cirsium arvense is a perennial species of flowering plant in the family Asteraceae, native throughout Europe and western Asia, northern Africa and widely introduced elsewhere.[1] [2] [3] [4] The standard English name in its native area is creeping thistle.[5] It is also commonly known as Canada thistle and field thistle.[6] [7]

The plant is beneficial for pollinators that rely on nectar. It also was a top producer of nectar sugar in a 2016 study in Britain, with a second-place ranking due to a production per floral unit of .[8]

Alternative names

A number of other names are used in other areas or have been used in the past, including: Canadian thistle, lettuce from hell thistle, California thistle,[9] corn thistle, cursed thistle, field thistle, green thistle, hard thistle, perennial thistle, prickly thistle, setose thistle, small-flowered thistle, way thistle, and stinger-needles. Canada and Canadian thistle are in wide use in the United States, despite being a misleading designation (it is not of Canadian origin).[10]

Description

Cirsium arvense is a C3 carbon fixation plant. The C3 plants originated during Mesozoic and Paleozoic eras, and tend to thrive in areas where sunlight intensity is moderate, temperatures are moderate, and ground water is plentiful. plants lose 97% of the water taken up through their roots to transpiration.[11]

Creeping thistle is a herbaceous perennial plant growing up to 150 cm, forming extensive clonal colonies from thickened roots that send up numerous erect shoots during the growing season.[12] It is a ruderal species.[13]

Given its adaptive nature, Cirsium arvense is one of the worst invasive weeds worldwide. Through comparison of its genetic expressions, the plant evolves differently with respect to where it has established itself. Differences can be seen in their R-protein mediated defenses, sensitivities to abiotic stresses, and developmental timing.[14]

Taxonomy

Cirsium arvense is placed in the subtribe Carduinae, tribe Cardueae of the family Asteraceae. Unlike other species in the same genus, it is dioecious, although male plants sometimes produce bisexual flowers.[15] It also differs from other native North American species in having large roots and multiple small flower heads on a branched stem.[16]

Underground network

Its underground structure consists of four types, 1) long, thick, horizontal roots, 2) long, thick, vertical roots, 3) short, fine shoots, and 4) vertical, underground stems.[17] Though asserted in some literature, creeping thistle does not form rhizomes.[18] Root buds form adventitiously on the thickened roots of creeping thistle, and give rise to new shoots. Shoots can also arise from the lateral buds on the underground portion of regular shoots, particularly if the shoots are cut off through mowing or when stem segments are buried.[18]

Shoots and leaves

Stems are 30–150 cm, slender green, and freely branched,[18] smooth and glabrous (having no trichomes or glaucousness), mostly without spiny wings. Leaves are alternate on the stem with their base sessile and clasping or shortly decurrent. The leaves are very spiny, lobed, and up to 15–20 cm long and 2–3 cm broad (smaller on the upper part of the flower stem).

Flower head fragrance

Every plant species has a unique floral fragrance.[19] The fragrance that C. arvense emits attracts both pollinators and florivores containing compounds that attract each respectively. Honeybees are shown to have the highest visitation rate, followed by other bee species in the genera Halictus and Lasioglossum. Hover flies are also commonly seen pollinating the flower heads of this plant.[20] Florivores such as beetles and grasshoppers are commonly seen as well. The compounds found in the fragrance may not be in the highest abundance but they are highly attractive. P-anisaldehyde is found in less than 1%, yet it attracts pollinators such as honey bees.[21] This is thought to be the result of additive and synergistic effects from the blend increasing the attraction to the plant. After pollination, it can be seen that fragrance emission decreases in C.arvense. This is regulated through a regulatory feedback mechanism depending on the pollination status of the plant. This mechanism has only been observed in pistillate plants for dioecious C. arvense. Fragrance emission increases with age.[22]

The fragrance contains several compounds that attract diverse insects. Looking at certain butterflies species, it can be seen that the fragrance blend is highly attractive to them, being sensitive to their antennae. High antennal response are seen in consequence to the phenylacetaldehyde as well as the terpenes (oxoisophoroneoxide, oxoisophorone, and dihydrooxoisophorone) found in the blend. This was seen in both natural plants emitting the fragrance and emitting the scent synthetically.[23] It is believed that general arousal can be stimulated through exposure of a single compound, whereas the accumulated exposure of all the compounds influence the foraging behaviour of the butterflies.

Flowers and seeds

The inflorescence compound cyme is 10mm22mm in diameter, pink-purple, with all the florets of similar form (no division into disc and ray florets). The flowers are usually dioecious, but not invariably so, with some plants bearing hermaphrodite flowers.[18] The seeds are 4–5 mm long, with a feathery pappus which assists in wind dispersal.[24] [25] [26] One to 5 flower heads occur per branch, with plants in very favourable conditions producing up to 100 heads per shoot.[12] Each head contains an average of 100 florets. Average seed production per plant has been estimated at 1530. More seeds are produced when male and female plants are closer together, as flowers are primarily insect-pollinated.[12] The plant can bloom from seed in a year then subsequently the seeds produced can emerge in the following year.[27]

Varieties

Variation in leaf characters (texture, vestiture, segmentation, spininess) is the basis for determining creeping thistle varieties.[12] According to Flora of Northwest Europe[24] the two varieties are:

The Biology of Canadian Weeds: Cirsium arvense[12] list four varieties:

Ecology

The seeds are an important food for the goldfinch and the linnet, and to a lesser extent for other finches.[28] Creeping thistle foliage is used as a food by over 20 species of Lepidoptera, including the painted lady butterfly and the engrailed moth, and several species of aphids.[29] [30] [31] The C. arvense species is also noted to be a food source for the Altica cirsicola beetle species.[32]

The flowers are visited by a wide variety of insects such as bees, moths, wasps and beetles[33] (the generalised pollination syndrome).[34]

Status as a weed

The species is widely considered a weed even where it is native, for example being designated an "injurious weed" in the United Kingdom under the Weeds Act 1959.[35] It is also a serious invasive species in many additional regions where it has been introduced, usually accidentally as a contaminant in cereal crop seeds. It is cited as a noxious weed in several countries; for example Australia, Brazil, Canada, Ireland, New Zealand, and the United States. Many countries regulate this plant, or its parts (i.e., seed) as a contaminant of other imported products such as grains for consumption or seeds for propagation. In Canada, C. arvense is classified as a primary noxious weed seed in the Weed Seeds Order 2005 which applies to Canada's Seeds Regulations.[36]

A study conducted has shown that with future global atmospheric carbon levels, C. arvense have a risk of increased growth which could expand its range and outcompete native species.[37]

Control

Organic

Control methods include cutting at flower stem extension before the flower buds open to prevent seed spread. Repeated cutting at the same growth stage over several years may "wear down" the plant.

Growing forages such as alfalfa can help control the species as a weed by frequently cutting the alfalfa to add nutrients to the soil, the weeds also get cut, and have a harder time re-establishing themselves, which reduces the shoot density.[38]

Orellia ruficauda feeds on Canada thistle and has been reported to be the most effective biological control agent for that plant.[39] Its larvae parasitize the seed heads, feeding solely upon fertile seed heads.[40]

The weevil Larinus planus also feeds on the thistle and has been used as a control agent in Canada.[41] One larva of the species can consume up to 95% of seeds in a particular flower bud.[42] However, use of this weevil has had a damaging effect on other thistle species as well, include some that are threatened.[43] It may therefore not be a desirable control agent. It is unclear if the government continues to use this weevil to control Canada thistles or not.

The rust species Puccinia obtegens has shown some promise for controlling Canada thistle, but it must be used in conjunction with other control measures to be effective.[44] Also Puccinia punctiformis is used in North America and New Zealand in biological control.[45] In 2013, in four countries in three continents, epidemics of systemic disease caused by this rust fungus could be routinely and easily established.[46] The procedure for establishing this control agent involves three simple steps and is a long-term sustainable control solution that is free and does not involve herbicides. Plants systemically diseased with the rust gradually but surely die. Reductions in thistle density were estimated, in 10 sites in the U.S., Greece, and Russia, to average 43%, 64%, and 81% by 18, 30, and 42 months, respectively, after a single application of spores of the fungus.[47]

Aceria anthocoptes feeds on this species and is considered to be a good potential biological control agent.

Chemical

Applying herbicide: Herbicides dominated by phenoxy compounds (especially MCPA) caused drastic declines in thistle infestation in Sweden in the 1950s.[48] MCPA and clopyralid are approved in some regions. Glyphosate is a non-selective herbicide that can be used when the plant has grown a few inches tall, where the herbicide can be absorbed by the leaf surfaces.[27]

Crop tolerance and weed control ratings were conducted in the spring of 2012, and the Prepass herbicide by DOW AgroSciences was found to be most effective at controlling the species as a weed problem in alfalfa fields.[49]

Uses

Like other Cirsium species, the roots are edible, though rarely used, not in the least because of their propensity to induce flatulence in some people. The taproot is considered the most nutritious part. The leaves are also edible, though the spines make their preparation for food too tedious to be worthwhile. The stalks, however, are also edible and more easily despined.[50] Bruichladdich distillery on Isle of Islay lists creeping thistle as one of the 22 botanical forages used in their gin, The Botanist.[51]

The feathery pappus is also used by the Cherokee to fletch blowgun darts.[52]

External links

Notes and References

  1. Book: Hodgson, Jesse M.. The Nature, Ecology, and Control of Canada Thistle. Agricultural Research Service, U.S. Dept. of Agriculture. 1968. 1.
  2. Joint Nature Conservation Committee: Cirsium arvense
  3. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200023656 Flora of China, 丝路蓟 si lu ji, Cirsium arvense (Linnaeus) Scopoli
  4. http://luirig.altervista.org/flora/taxa/index1.php?scientific-name=cirsium+arvense Altervista Flora Italiana, Cardo dei campi comune, Acker-Kratzdistel, åkertistel, Cirsium arvense (L.) Scop.
  5. Botanical Society of Britain and Ireland Database
  6. http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=200023656 Flora of North America, Canada or creeping or field thistle, Chardon du Canada ou des champs, cirse des champs, Cirsium arvense (Linnaeus) Scopoli
  7. Web site: Nebraska Department of Agriculture Noxious Weed Program . 2016-05-08 . 2022-01-19 . https://web.archive.org/web/20220119043336/https://nda.nebraska.gov/plant/noxious_weeds/pdf/canada.pdf . dead .
  8. Hicks. DM. Ouvrard. P. Baldock. KCR. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLOS ONE. 11. 6. e0158117. 2016. 10.1371/journal.pone.0158117. 27341588. 4920406. 2016PLoSO..1158117H. free.
  9. http://www.landcareresearch.co.nz/research/biocons/weeds/weed_details.asp?WeedSpp_ID=10 Californian Thistle (Cirsium arvense)
  10. Invasive and Problem Plants of the United States: Cirsium arvense
  11. Raven, J.A.. Edwards, D.. 2001. Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany. 52. 90001. 381–401. 11326045. 10.1093/jexbot/52.suppl_1.381. free.
  12. MOORE. R. J.. 1975-10-01. THE BIOLOGY OF CANADIAN WEEDS.: 13. Cirsium arvense (L.) Scop.. Canadian Journal of Plant Science. 55. 4. 1033–1048. 10.4141/cjps75-163. 0008-4220. free.
  13. https://books.google.com/books?id=uK9R7N-QaJMC&q=arvense p80
  14. 10.1111/nph.12258 . Transcriptome divergence between introduced and native populations of Canada thistle, Cirsium arvense . 2013 . Guggisberg . Alessia . Lai . Zhao . Huang . Jie . Rieseberg . Loren H. . New Phytologist . 199 . 2 . 595–608 . 23586922 . free .
  15. 10.1093/oxfordjournals.aob.a085102. Sexual Dimorphism in Cirsium arvense (L.) Scop. 1976. Lloyd. D. G.. Myall. A. J.. Annals of Botany. 40. 115–123.
  16. Web site: Canada Thistle . 2022-05-01.
  17. Hamdoun. A. M.. 1970-09-01. The Anatomy of Subterranean Structures of Cirsium arvense (L.) Scop.. Weed Research. en. 10. 3. 284–287. 10.1111/j.1365-3180.1970.tb00952.x. 1970WeedR..10..284H . 1365-3180.
  18. Donald. William. 1994. The Biology of Canada Thistle (Cirsium arvense). Weed Science. 6. 2016-07-14.
  19. Andersson. Susanna. 2003-03-01. Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology. 13. 1. 13–20. 10.1007/s000490300001. 2003Checo..13...13A . 22444773. 0937-7409.
  20. Book: Theis, Nina Aileen.. Targeting pollinators and evading herbivores : floral scent emission in two species of Cirsium. 57595495.
  21. Theis. Nina. May 2006. Fragrance of Canada Thistle (Cirsium arvense) Attracts Both Floral Herbivores and Pollinators. Journal of Chemical Ecology. 32. 5. 917–927. 10.1007/s10886-006-9051-x. 16739013. 2006JCEco..32..917T . 21222911. 0098-0331.
  22. Theis. Nina. Raguso. Robert A.. 2005-10-25. The Effect Of Pollination On Floral Fragrance in Thistles. Journal of Chemical Ecology. 31. 11. 2581–2600. 10.1007/s10886-005-7615-9. 16273430. 2005JCEco..31.2581T . 5722787. 0098-0331.
  23. Theis. Nina. Raguso. Robert A.. November 2005. The effect of pollination on floral fragrance in thistles. Journal of Chemical Ecology. 31. 11. 2581–2600. 10.1007/s10886-005-7615-9. 0098-0331. 16273430. 2005JCEco..31.2581T . 5722787.
  24. Flora of Northwest Europe: Cirsium arvense
  25. Blamey, M. & Grey-Wilson, C. (1989). Flora of Britain and Northern Europe.
  26. Kay, Q. O. N. (1985). Hermaphrodites and subhermaphrodites in a reputedly dioecious plant, Cirsium arvense (L.) Scop. New Phytol. 100: 457-472. Available online (pdf file).
  27. Web site: America's most weeded: Canada Thistle. 25 August 2015 .
  28. Cramp, S., & Perrins, C. M. (1994). The Birds of the Western Palearctic. Vol. VIII: Crows to Finches. Oxford University Press, Oxford.
  29. Finnish Lepidoptera Cirsium arvense
  30. The Ecology of Commanster: Cirsium arvense
  31. Ecological Flora of the British Isles: Phytophagous Insects for Cirsium arvense
  32. Laroche . A. . DeClerck-Floate . R. A. . LeSage . L. . Floate . K. D. . Demeke . T. . 1996-06-01 . AreAltica carduorumandAltica cirsicola(Coleoptera: Chrysomelidae) Different Species? Implications for the Release of A. cirsicolafor the Biocontrol of Canada Thistle in Canada . Biological Control . 6 . 3 . 306–314 . 10.1006/bcon.1996.0039 . 1996BiolC...6..306L . 1049-9644.
  33. El-Sayed. A. M.. Byers. J. A.. Manning. L. M.. Jürgens. A.. Mitchell. V. J.. Suckling. D. M.. June 2008. Floral scent of Canada thistle and its potential as a generic insect attractant. Journal of Economic Entomology. 101. 3. 720–727. 10.1603/0022-0493(2008)101[720:FSOCTA]2.0.CO;2. 0022-0493. 18613571. 14419740 . free.
  34. 10.1111/plb.12328. 25754608. Competition for pollinators and intra-communal spectral dissimilarity of flowers. Plant Biology. 18. 1. 56–62. 2015. Van Der Kooi. C. J.. Pen. I.. Staal. M.. Stavenga. D. G.. Elzenga. J. T. M..
  35. DEFRA: Identification of injurious weeds
  36. http://www.gazette.gc.ca/archives/p1/2005/2005-02-26/pdf/g1-13909.pdf Weed Seeds Order 2005
  37. Ziska . L. H. . 2003-01-02 . Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide . Journal of Experimental Botany . 54 . 381 . 395–404 . 10.1093/jxb/erg027 . 12493868 . 0022-0957.
  38. Web site: Forages in Rotation. 2016. Saskatchewan Soil Conservation Association. 2016-12-01. 2016-12-02. https://web.archive.org/web/20161202101131/http://www.soilcc.ca/ggmp_fact_sheets/pdf/Forages%20in%20rotation.pdf. dead.
  39. Moore 1975, Maw 1976
  40. http://ir.lib.sfu.ca/bitstream/1892/6217/1/b14461626.pdf Lalonde
  41. Book: Operational Field Guide to the Propagation and Establishment of the Bioagent Larinus Planus. May 2001. Province of British Columbia, Ministry of Forests. 2019-01-30. https://web.archive.org/web/20181113204115/https://www.for.gov.bc.ca/hra/plants/downloads/FieldGuide_Larinus_planus.pdf. 2018-11-13. dead.
  42. Web site: Larinus planus. Ministry of Forests, Lands, and Natural Resource Operations. Province of British Columbia, Ministry of Forests. en. 17 May 2007. 30 January 2019. https://web.archive.org/web/20190130220841/https://www.for.gov.bc.ca/hra/plants/biocontrol/detailed_bioagent_pages/Larinus_planus.htm. 30 January 2019. dead.
  43. Louda. Svaa M.. O'Brien. Charles W.. Unexpected Ecological Effects of Distributing the Exotic Weevil, Larinus planus (F.), for the Biological Control of Canada Thistle. Conservation Biology. June 2002. 16. 3. 717–727. 10.1046/j.1523-1739.2002.00541.x. 2002ConBi..16..717L . 2367835.
  44. Turner et al. 1980.
  45. R. C. French, A. R. Lightfield: Induction of Systemic Aecial Infection in Canada Thistle (Cirsium arvense) by Teliospores of Puccinia punctiformis. In: Phytopathology. Band 80, Nr. 8, 1990, S. 872–877,
  46. Berner, D. K., et al. (2013) Successful establishment of epiphytotics of Puccinia punctiformis for biological control of Cirsium arvense. Biological Control 67:350-360.
  47. Berner, D. K., et al. (2015) Asymptomatic systemic disease of Canada thistle (Cirsium arvense) caused by Puccinia punctiformis and changes in shoot density following inoculation. Biological Control 86:28-35.
  48. Weeds and weed management on arable land: an ecological approach Sigurd Håkansson CABI Publishing Series, 2003,
  49. Web site: 2011/12 Fall Alfalfa Herbicide Trials for Control of Canada Thistle. Administrator. www.forageseed.net. 2016-12-01. https://web.archive.org/web/20161202165345/http://www.forageseed.net/index.php?option=com_content&view=article&id=170:201%09112-nfall-alfalfa-herbicide-trials-for-control-of-canada-thistle&catid=60:2012-%09research&Itemid=149. 2016-12-02. dead.
  50. Plants for a Future: Cirsium arvense
  51. Web site: The Botanist. 2015-04-18. https://web.archive.org/web/20170427033527/https://www.thebotanist.com/distilled/the-22. 2017-04-27. dead.
  52. Web site: Culture Keepers: Blowgun. https://ghostarchive.org/varchive/youtube/20211221/ySjOxBJ0AEQ . 2021-12-21 . live. YouTube. 2013-04-12. 2017-08-25.