Coxal gland explained

The coxal gland is a gland found in some arthropods, for collecting and excreting urine. They are found in all arachnids (with the exception of some Acari), and in other chelicerates, such as horseshoe crabs.[1] The coxal gland is thought to be homologous with the antennal gland of crustaceans. The gland consists of an end sac (saccule), a long duct (labyrinth) and a terminal bladder (reservoir).[2] There is generally only one pair (two in some spiders), and they open on the coxae of the walking legs.[1] The coxal secretion of adult female ticks of Ornithodoros erraticus contains a sex pheromone.[3]

Excretory System

The excretory system of the prawn lacks a true kidney. The following parts are found in its excretory system:

Communication

In invertebrates with coxal glands, many forms of communication are conveyed via chemicals in the urine. Several studies have shown that in crayfish, these chemicals convey information such as reproductive capability, the identity of individual crayfish, as well as their aggression levels and hierarchical status.[4] For example, when two male crayfish meet, they will engage in combat. Combat determines which individual is "dominant" or "submissive" in the hierarchy. These encounters affect their aggression levels, regulated by serotonin, and thus changes the chemical composition of their urine . The chemical changes undergone will mediate further encounters, as they will offer crayfish a certain level of "familiarity" with each other. The chemicals in their urine communicate their rank to other crayfish and while the intensity of the encounter remains the same, the length of the encounter will be much shorter.[5]

Communication Interference

Foreign chemicals introduced into the ecosystem have the potential to interfere with the arthropod's chemical receptors. Insecticide run-off from agricultural applications has been shown to inhibit communication in crayfish. Neonicotinoids are widely used systemic insecticides that act as a neurotoxin to most arthropods that are water soluble and frequently make it into various waterways.[6] Neonicotinoids bind to nicotinic acetylcholine receptors (nAChR), which kills insects by overstimulating them. nAChRs can be found in the interneurons of the brain, neuromuscular junctions, and the olfactory bulb.[7] Neonicotinoids binding to these receptors prevents the chemicals involved in communication from binding to their proper receptors. As a result, crayfish exposed to these insecticides at sublethal doses lose their ability to detect certain cues. Crayfish will fail to recognize individuals that they have had previous encounters with, as well as their hierarchical status. Crayfish also will fail to find food, and lab experiments show that they display no preference for environments with or without food.

Notes and References

  1. Book: Colin Little . 1983 . The Colonisation of Land: Origins and Adaptations of Terrestrial Animals . . 978-0-521-25218-8 . Chelicerates . 106–126 . https://books.google.com/books?id=tfs8AAAAIAAJ&pg=PA118.
  2. Book: https://books.google.com/books?id=b_gsiQXNhTUC&pg=PA333. An Introduction to Arthropoda. Anmol Publications. 2002. 978-81-261-0673-8. 2nd. 317–342. Scorpions. H. S. Bhamrah & Kavita Juneja.
  3. Pheromone of Ornithodoros spp. (Argasidae) in the coxal fluid of female ticks. Parasitology. Schlein, Y.. Gunders, A. E.. 10.1017/S0031182000066993. 82. 3. 1981. 467–471. 85691239 .
  4. Kubec . Jan . Kouba . Antonín . Buřič . Miloš . 2019-01-01 . Communication, behaviour, and decision making in crayfish: A review . Zoologischer Anzeiger . en . 278 . 28–37 . 10.1016/j.jcz.2018.10.009 . 92105429 . 0044-5231.
  5. Huber . Robert . Schneider . Rebecca A. Zulandt . Moore . Paul . Individual and Status Recognition in the Crayfish, Orconectes Rusticus: The Effects of Urine Release on Fight Dynamics . 2001-01-01 . Behaviour . en . 138 . 2 . 137–153 . 10.1163/15685390151074348 . 0005-7959.
  6. Goulson . Dave . 2013-06-13 . REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides . Journal of Applied Ecology . 50 . 4 . 977–987 . 10.1111/1365-2664.12111 . 2013JApEc..50..977G . 267975 . 0021-8901.
  7. Scholl . Lee E. . Sultana . Tamanna . Metcalfe . Chris . Dew . William A. . 2022-06-01 . Clothianidin interferes with recognition of a previous encounter in rusty crayfish (Faxonius rusticus) due to a chemosensory impairment . Chemosphere . en . 296 . 133960 . 10.1016/j.chemosphere.2022.133960 . 35167832 . 2022Chmsp.296m3960S . 246810470 . 0045-6535.