In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:
S=bc\sinA=ac\sinB=ab\sinC
where S = 2 × area of reference triangle and
S\varphi=S\cot\varphi.
in particular
SA=S\cotA=bc\cosA=
b2+c2-a2 | |
2 |
SB=S\cotB=ac\cosB=
a2+c2-b2 | |
2 |
SC=S\cotC=ab\cosC=
a2+b2-c2 | |
2 |
S\omega=S\cot\omega=
a2+b2+c2 | |
2 |
\omega
a2=b2+c2-2bc\cosA
S | ||||
|
=S\cot{
\pi | |
3 |
S2\varphi=
| ||||||||||
2S\varphi |
S | ||||||
|
=S\varphi+\sqrt
2 | |
{S | |
\varphi |
+S2}
\varphi
0<\varphi<\pi
S\vartheta=
S\varthetaS\varphi-S2 | |
S\vartheta+S\varphi |
S\vartheta=
S\varthetaS\varphi+S2 | |
S\varphi-S\vartheta |
.
Furthermore the convention uses a shorthand notation for
S\varthetaS\varphi=S\vartheta\varphi
S\varthetaS\varphiS\psi=S\vartheta\varphi\psi.
Hence:
\sinA=
S | |
bc |
=
S | ||||||||
|
a2=SB+SC b2=SA+SC c2=SA+SB.
Some important identities:
\sumcyclicSA=SA+SB+SC=S\omega
S2=b2c2-
2 | |
S | |
A |
=a2c2-
2 | |
S | |
B |
=a2b2-
2 | |
S | |
C |
SBC=SBSC=S2-
2S | |
a | |
A |
SAC=SASC=S2-
2S | |
b | |
B |
SAB=SASB=S2-
2S | |
c | |
C |
SABC=SASBSC=
2) | |
S | |
\omega-4R |
2-r | |
S | |
\omega=s |
2-4rR
where R is the circumradius and abc = 2SR and where r is the incenter,
s=
a+b+c | |
2 |
a+b+c=
S | |
r |
.
Some useful trigonometric conversions:
\sinA\sinB\sinC=
S | |
4R2 |
\cosA\cosB\cosC=
| |||||||
4R2 |
\sumcyclic\sinA=
S | |
2Rr |
=
s | |
R |
\sumcyclic\cosA=
r+R | |
R |
\sumcyclic\tanA=
S | ||||||
|
=\tanA\tanB\tanC.
Some useful formulas:
\sumcyclic
2S | |
a | |
A |
=
2S | |
a | |
A |
+
2S | |
b | |
B |
+c2SC=2S2 \sumcyclica4=
2-S | |
2(S | |
\omega |
2)
\sumcyclic
2 | |
S | |
A |
=
2 | |
S | |
\omega |
-2S2 \sumcyclicSBC=\sumcyclicSBSC=S2 \sumcyclicb2c2=
2 | |
S | |
\omega |
+S2.
Some examples using Conway triangle notation:
Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:
D2=\sumcyclic
2S | ||||
a | ||||
|
-
qa | |
Kq |
\right)2.
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a
Kp=\sumcyclic
2S | |
a | |
A |
=2S2 Kq=\sumcyclicSBSC=S2.
Hence:
\begin{align} D2&{}=\sumcyclic
2S | ||||
a | ||||
|
-
SBSC | |
aS2 |
\right)2\\ &{}=
1 | |
4S4 |
\sumcyclic
3 | |
a | |
A |
-
SASBSC | |
S4 |
\sumcyclic
2S | |
a | |
A |
+
SASBSC | |
S4 |
\sumcyclicSBSC\\ &{}=
1 | |
4S4 |
\sumcyclic
2(S | |
a | |
A |
2-S | |
BS |
C)-
2) | |
2(S | |
\omega-4R |
+
2) | |
(S | |
\omega-4R |
\\ &{}=
1 | |
4S2 |
\sumcyclic
2 | |
a | |
A |
-
SASBSC | |
S4 |
\sumcyclic
2S | |
a | |
A |
-
2) | |
(S | |
\omega-4R |
\\ &{}=
1 | |
4S2 |
\sumcyclica2(b2c2-S2)-
1 | |
2 |
2) | |
(S | |
\omega-4R |
2) | |
-(S | |
\omega-4R |
\\ &{}=
3a2b2c2 | |
4S2 |
-
1 | |
4 |
\sumcyclica2-
3 | |
2 |
2) | |
(S | |
\omega-4R |
\\ &{}=3R2-
1 | |
2 |
S\omega-
3 | |
2 |
S\omega+6R2\\ &{}=9R2-2S\omega. \end{align}
This gives:
OH=\sqrt{9R2-2S\omega}.