Conway triangle notation explained

In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:

S=bc\sinA=ac\sinB=ab\sinC

where S = 2 × area of reference triangle and

S\varphi=S\cot\varphi.

in particular

SA=S\cotA=bc\cosA=

b2+c2-a2
2

SB=S\cotB=ac\cosB=

a2+c2-b2
2

SC=S\cotC=ab\cosC=

a2+b2-c2
2

S\omega=S\cot\omega=

a2+b2+c2
2

     where

\omega

is the Brocard angle. The law of cosines is used:

a2=b2+c2-2bc\cosA

.
S
\pi
3

=S\cot{

\pi
3
} = S \frac \,

S2\varphi=

2
S-S2
\varphi
2S\varphi

   

S
\varphi
2

=S\varphi+\sqrt

2
{S
\varphi

+S2}

   for values of  

\varphi

  where  

0<\varphi<\pi

S\vartheta=

S\varthetaS\varphi-S2
S\vartheta+S\varphi

    S\vartheta=

S\varthetaS\varphi+S2
S\varphi-S\vartheta

.

Furthermore the convention uses a shorthand notation for

S\varthetaS\varphi=S\vartheta\varphi

and

S\varthetaS\varphiS\psi=S\vartheta\varphi\psi.

Hence:

\sinA=

S
bc

=

S
\sqrt
2
{S
A
+S2
} \quad\quad \cos A = \frac = \frac \quad\quad \tan A = \frac \,

a2=SB+SC     b2=SA+SC     c2=SA+SB.

Some important identities:

\sumcyclicSA=SA+SB+SC=S\omega

S2=b2c2-

2
S
A

=a2c2-

2
S
B

=a2b2-

2
S
C

SBC=SBSC=S2-

2S
a
A

    SAC=SASC=S2-

2S
b
B

    SAB=SASB=S2-

2S
c
C

SABC=SASBSC=

2)    
S
\omega-4R
2-r
S
\omega=s

2-4rR

where R is the circumradius and abc = 2SR and where r is the incenter,  

s=

a+b+c
2

   and  

a+b+c=

S
r

.

Some useful trigonometric conversions:

\sinA\sinB\sinC=

S
4R2

    \cosA\cosB\cosC=

2
S
\omega-4R
4R2

\sumcyclic\sinA=

S
2Rr

=

s
R

    \sumcyclic\cosA=

r+R
R

    \sumcyclic\tanA=

S
2
S
\omega-4R

=\tanA\tanB\tanC.

Some useful formulas:

\sumcyclic

2S
a
A

=

2S
a
A

+

2S
b
B

+c2SC=2S2     \sumcyclica4=

2-S
2(S
\omega

2)

\sumcyclic

2
S
A

=

2
S
\omega

-2S2     \sumcyclicSBC=\sumcyclicSBSC=S2     \sumcyclicb2c2=

2
S
\omega

+S2.

Some examples using Conway triangle notation:

Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:

D2=\sumcyclic

2S
a
A\left(pa
Kp

-

qa
Kq

\right)2.

Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:

For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a

Kp=\sumcyclic

2S
a
A

=2S2     Kq=\sumcyclicSBSC=S2.

Hence:

\begin{align} D2&{}=\sumcyclic

2S
a
A\left(aSA
2S2

-

SBSC
aS2

\right)2\\ &{}=

1
4S4

\sumcyclic

3
a
A

-

SASBSC
S4

\sumcyclic

2S
a
A

+

SASBSC
S4

\sumcyclicSBSC\\ &{}=

1
4S4

\sumcyclic

2(S
a
A
2-S
BS

C)-

2)
2(S
\omega-4R

+

2)
(S
\omega-4R

\\ &{}=

1
4S2

\sumcyclic

2
a
A

-

SASBSC
S4

\sumcyclic

2S
a
A

-

2)
(S
\omega-4R

\\ &{}=

1
4S2

\sumcyclica2(b2c2-S2)-

1
2
2)
(S
\omega-4R
2)
-(S
\omega-4R

\\ &{}=

3a2b2c2
4S2

-

1
4

\sumcyclica2-

3
2
2)
(S
\omega-4R

\\ &{}=3R2-

1
2

S\omega-

3
2

S\omega+6R2\\ &{}=9R2-2S\omega. \end{align}

This gives:

OH=\sqrt{9R2-2S\omega}.