In the area of modern algebra known as group theory, the Conway group Co2 is a sporadic simple group of order
42,305,421,312,000
= 218365371123
≈ 4.
Co2 is one of the 26 sporadic groups and was discovered by as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0.
The Schur multiplier and the outer automorphism group are both trivial.
Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices.
Co2 acts on the 23-dimensional even integral lattice with no roots of determinant 4, given as a sublattice of the Leech lattice orthogonal to a norm 4 vector. Over the field with 2 elements it has a 22-dimensional faithful representation; this is the smallest faithful representation over any field.
showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either Z/2Z × Co2 or Z/2Z × Co3.
The Mathieu group M23 is isomorphic to a maximal subgroup of Co2 and one representation, in permutation matrices, fixes the type 2 vector u = (-3,123). A block sum ζ of the involution η =
{1/2}\left(\begin{matrix} 1&-1&-1&-1\\ -1&1&-1&-1\\ -1&-1&1&-1\\ -1&-1&-1&1\end{matrix}\right)
A 24-dimensional block sum of η and -η is in Co0 if and only if the number of copies of η is odd.
Another representation fixes the vector v = (4,-4,022). A monomial and maximal subgroup includes a representation of M22:2, where any α interchanging the first 2 co-ordinates restores v by then negating the vector. Also included are diagonal involutions corresponding to octads (trace 8), 16-sets (trace -8), and dodecads (trace 0). It can be shown that Co2 has just 3 conjugacy classes of involutions. η leaves (4,-4,0,0) unchanged; the block sum ζ provides a non-monomial generator completing this representation of Co2.
There is an alternate way to construct the stabilizer of v. Now u and u+v = (1,-3,122) are vertices of a 2-2-2 triangle (vide infra). Then u, u+v, v, and their negatives form a coplanar hexagon fixed by ζ and M22; these generate a group Fi21 ≈ U6(2). α (vide supra) extends this to Fi21:2, which is maximal in Co2. Lastly, Co0 is transitive on type 2 points, so that a 23-cycle fixing u has a conjugate fixing v, and the generation is completed.
Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.
found the 11 conjugacy classes of maximal subgroups of Co2 as follows:
No. | Structure | Order | Index | Comments | |
---|---|---|---|---|---|
1 | Fi21 2 ≈ U6(2):2 | 18,393,661,440 = 216·36·5·7·11 | 2,300 = 22·52·23 | symmetry/reflection group of coplanar hexagon of 6 type 2 points; fixes one hexagon in a rank 3 permutation representation of Co2 on 2300 such hexagons. Under this subgroup the hexagons are split into orbits of 1, 891, and 1408. Fi21 fixes a 2-2-2 triangle defining the plane. | |
2 | 210:M22:2 | 908,328,960 = 218·32·5·7·11 | 46,575 = 34·52·23 | has monomial representation described above; 210:M22 fixes a 2-2-4 triangle. | |
3 | McL | 898,128,000 = 27·36·53·7·11 | 47,104 = 211·23 | fixes a 2-2-3 triangle | |
4 | 2:Sp6(2) | 743,178,240 = 218·34·5·7 | 56,925 = 32·52·11·23 | centralizer of an involution of class 2A (trace -8) | |
5 | HS 2 | 88,704,000 = 210·32·53·7·11 | 476,928 = 28·34·23 | fixes a 2-3-3 triangle or exchanges its type 3 vertices with sign change | |
6 | (24 ×).A8 | 41,287,680 = 217·32·5·7 | 1,024,650 = 2·34·52·11·23 | centralizer of an involution of class 2B | |
7 | U4(3):D8 | 26,127,360 = 210·36·5·7 | 1,619,200 = 28·52·11·23 | ||
8 | 24+10.(S5 × S3) | 11,796,480 = 218·32·5 | 3,586,275 = 34·52·7·11·23 | ||
9 | M23 | 10,200,960 = 27·32·5·7·11·23 | 4,147,200 = 211·34·52 | fixes a 2-3-4 triangle | |
10 | ..S5 | 933,120 = 28·36·5 | 45,337,600 = 210·52·7·11·23 | normalizer of a subgroup of order 3 (class 3A) | |
11 | 5:4S4 | 12,000 = 25·3·53 | 3,525,451,776 = 213·35·7·11·23 | normalizer of a subgroup of order 5 (class 5A) |
Traces of matrices in a standard 24-dimensional representation of Co2 are shown. The names of conjugacy classes are taken from the Atlas of Finite Group Representations. [1]
Centralizers of unknown structure are indicated with brackets.
Class | Order of centralizer | Centralizer | Size of class | Trace | |
---|---|---|---|---|---|
1A | all Co2 | 1 | 24 | ||
2A | 743,178,240 | 21+8:Sp6(2) | 32·52·11·23 | -8 | |
2B | 41,287,680 | 21+4:24.A8 | 2·34·5211·23 | 8 | |
2C | 1,474,560 | 210.A6.22 | 23·34·52·7·11·23 | 0 | |
3A | 466,560 | 31+421+4A5 | 211·52·7·11·23 | -3 | |
3B | 155,520 | 3×U4(2).2 | 211·3·52·7·11·23 | 6 | |
4A | 3,096,576 | 4.26.U3(3).2 | 24·33·53·11·23 | 8 | |
4B | 122,880 | [2<sup>10</sup>]S5 | 25·35·52·7·11·23 | -4 | |
4C | 73,728 | [2<sup>13</sup>.3<sup>2</sup>] | 25·34·53·7·11·23 | 4 | |
4D | 49,152 | [2<sup>14</sup>.3] | 24·35·53·7·11·23 | 0 | |
4E | 6,144 | [2<sup>11</sup>.3] | 27·35·53·7·11·23 | 4 | |
4F | 6,144 | [2<sup>11</sup>.3] | 27·35·53·7·11·23 | 0 | |
4G | 1,280 | [2<sup>8</sup>.5] | 210·36·52·7·11·23 | 0 | |
5A | 3,000 | 51+22A4 | 215·35·7·11·23 | -1 | |
5B | 600 | 5×S5 | 215·35·5·7·11·23 | 4 | |
6A | 5,760 | 3.21+4A5 | 211·34·52·7·11·23 | 5 | |
6B | 5,184 | [2<sup>6</sup>.3<sup>4</sup>] | 212·32·53·7·11·23 | 1 | |
6C | 4,320 | 6×S6 | 213·33·52·7·11·23 | 4 | |
6D | 3,456 | [2<sup>7</sup>.3<sup>3</sup>] | 211·33·53·7·11·23 | -2 | |
6E | 576 | [2<sup>6</sup>.3<sup>2</sup>] | 212·34·53·7·11·23 | 2 | |
6F | 288 | [2<sup>5</sup>.3<sup>2</sup>] | 213·34·53·7·11·23 | 0 | |
7A | 56 | 7×D8 | 215·36·53·11·233 | 3 | |
8A | 768 | [2<sup>8</sup>.3] | 210·35·53·7·11·23 | 0 | |
8B | 768 | [2<sup>8</sup>.3] | 210·35·53·7·11·23 | -2 | |
8C | 512 | [2<sup>9</sup>] | 29·36·53·7·11·23 | 4 | |
8D | 512 | [2<sup>9</sup>] | 29·36·53·7·11·23 | 0 | |
8E | 256 | [2<sup>8</sup>] | 210·36·53·7·11·23 | 2 | |
8F | 64 | [2<sup>6</sup>] | 212·36·53·7·11·23 | 2 | |
9A | 54 | 9×S3 | 217·33·53·7·11·23 | 3 | |
10A | 120 | 5×2.A4 | 215·35·52·7·11·23 | 3 | |
10B | 60 | 10×S3 | 216·35·52·7·11·23 | 2 | |
10C | 40 | 5×D8 | 215·36·52·7·11·23 | 0 | |
11A | 11 | 11 | 218·36·53·7·23 | 2 | |
12A | 864 | [2<sup>5</sup>.3<sup>3</sup>] | 213·33·53·7·11·23 | -1 | |
12B | 288 | [2<sup>5</sup>.3<sup>2</sup>] | 213·34·53·7·11·23 | 1 | |
12C | 288 | [2<sup>5</sup>.3<sup>2</sup>] | 213·34·53·7·11·23 | 2 | |
12D | 288 | [2<sup>5</sup>.3<sup>2</sup>] | 213·34·53·7·11·23 | -2 | |
12E | 96 | [2<sup>5</sup>.3] | 213·35·53·7·11·23 | 3 | |
12F | 96 | [2<sup>5</sup>.3] | 213·35·53·7·11·23 | 2 | |
12G | 48 | [2<sup>4</sup>.3] | 214·35·53·7·11·23 | 1 | |
12H | 48 | [2<sup>4</sup>.3] | 214·35·53·7·11·23 | 0 | |
14A | 56 | 5×D8 | 215·36·53·11·23 | -1 | |
14B | 28 | 14×2 | 216·36·53·11·23 | 1 | power equivalent |
14C | 28 | 14×2 | 216·36·53·11·23 | 1 | |
15A | 30 | 30 | 217·35·52·7·11·23 | 1 | |
15B | 30 | 30 | 217·35·52·7·11·23 | 2 | power equivalent |
15C | 30 | 30 | 217·35·52·7·11·23 | 2 | |
16A | 32 | 16×2 | 213·36·53·7·11·23 | 2 | |
16B | 32 | 16×2 | 213·36·53·7·11·23 | 0 | |
18A | 18 | 18 | 217·34·53·7·11·23 | 1 | |
20A | 20 | 20 | 216·36·52·7·11·23 | 1 | |
20B | 20 | 20 | 216·36·52·7·11·23 | 0 | |
23A | 23 | 23 | 218·36·53·7·11 | 1 | power equivalent |
23B | 23 | 23 | 218·36·53·7·11 | 1 | |
24A | 24 | 24 | 215·35·53·7·11·23 | 0 | |
24B | 24 | 24 | 215·35·53·7·11·23 | 1 | |
28A | 28 | 28 | 216·36·53·11·23 | 1 | |
30A | 30 | 30 | 217·35·52·7·11·23 | -1 | |
30B | 30 | 30 | 217·35·52·7·11·23 | 0 | |
30C | 30 | 30 | 217·35·52·7·11·23 | 0 |