Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.
See main article: Convex set.
A subset
C\subseteqX
X
0\leqr\leq1
x,y\inC
rx+(1-r)y\inC.
0<r<1
x,y\inC
x ≠ y,
rx+(1-r)y\inC.
See main article: Convex function.
Throughout,
f:X\to[-infty,infty]
[-infty,infty]=R\cup\{\pminfty\}
\operatorname{domain}f=X
f:X\to[-infty,infty]
holds for any real
0<r<1
x,y\inX
x ≠ y.
f
then
f
Convex functions are related to convex sets. Specifically, the function
f
The domain of a function
f:X\to[-infty,infty]
\operatorname{domain}f
The function
f:X\to[-infty,infty]
\operatorname{dom}f ≠ \varnothing
f(x)>-infty
x\in\operatorname{domain}f.
x
f
f(x)\inR
f
-infty.
-infty,
+infty.
f:Rn\to[-infty,infty]
b\inRn
r\inR
f(x)\geqx ⋅ b-r
x
where
x ⋅ b
See main article: Convex conjugate. The of an extended real-valued function
f:X\to[-infty,infty]
f*:X*\to[-infty,infty]
X*
X,
f*\left(x*\right)=\supz\left\{\left\langlex*,z\right\rangle-f(z)\right\}
where the brackets
\left\langle ⋅ , ⋅ \right\rangle
\left\langlex*,z\right\rangle:=x*(z).
f
f**=\left(f*\right)*:X\to[-infty,infty]
f**(x):=
\sup | |
z*\inX* |
\left\{\left\langlex,z*\right\rangle-f\left(z*\right)\right\}
x\inX.
\operatorname{Func}(X;Y)
Y
X,
\operatorname{Func}(X;[-infty,infty])\to\operatorname{Func}\left(X*;[-infty,infty]\right)
f\mapstof*
If
f:X\to[-infty,infty]
x\inX
\begin{alignat}{4} \partialf(x):&=\left\{x*\inX*~:~f(z)\geqf(x)+\left\langlex*,z-x\right\rangleforallz\inX\right\}&&(“z\inX''canbereplacedwith:“z\inXsuchthatz ≠ x'')\\ &=\left\{x*\inX*~:~\left\langlex*,x\right\rangle-f(x)\geq\left\langlex*,z\right\rangle-f(z)forallz\inX\right\}&&\\ &=\left\{x*\inX*~:~\left\langlex*,x\right\rangle-f(x)\geq\supz\left\langlex*,z\right\rangle-f(z)\right\}&&Therighthandsideisf*\left(x*\right)\\ &=\left\{x*\inX*~:~\left\langlex*,x\right\rangle-f(x)=f*\left(x*\right)\right\}&&Takingz:=xinthe\sup{}givestheinequality\leq.\\ \end{alignat}
For example, in the important special case where
f=\| ⋅ \|
X
0 ≠ x\inX
\partialf(x)=\left\{x*\inX*~:~\left\langlex*,x\right\rangle=\|x\|and\left\|x*\right\|=1\right\}
\partialf(0)=\left\{x*\inX*~:~\left\|x*\right\|\leq1\right\}.
For any
x\inX
x*\inX*,
f(x)+f*\left(x*\right)\geq\left\langlex*,x\right\rangle,
f(x)+f*\left(x*\right)=\left\langlex*,x\right\rangle
x*\in\partialf(x).
\partialf(x)
f*\left(x*\right).
The of a function
f:X\to[-infty,infty]
f**:X\to[-infty,infty].
For any
x\inX,
f**(x)\leqf(x)
f=f**
f
See main article: Convex optimization. A is one of the form
find
infxf(x)
f:X\to[-infty,infty]
M\subseteqX.
See main article: Duality (optimization). In optimization theory, the states that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem.
In general given two dual pairs separated locally convex spaces
\left(X,X*\right)
\left(Y,Y*\right).
f:X\to[-infty,infty],
x
infxf(x).
If there are constraint conditions, these can be built into the function
f
f=f+Iconstraints
I
F:X x Y\to[-infty,infty]
F(x,0)=f(x).
The with respect to the chosen perturbation function is given by
\sup | |
y*\inY* |
-F*\left(0,y*\right)
where
F*
F.
The duality gap is the difference of the right and left hand sides of the inequality
\sup | |
y*\inY* |
-F*\left(0,y*\right)\leinfxF(x,0).
This principle is the same as weak duality. If the two sides are equal to each other, then the problem is said to satisfy strong duality.
There are many conditions for strong duality to hold such as:
F=F**
F
F**
F
For a convex minimization problem with inequality constraints,
min{}xf(x)
gi(x)\leq0
i=1,\ldots,m.
the Lagrangian dual problem is
\sup{}uinf{}xL(x,u)
ui(x)\geq0
i=1,\ldots,m.
where the objective function
L(x,u)
L(x,u)=f(x)+
m | |
\sum | |
j=1 |
ujgj(x)
X=\{0\}
x\inX.
f
\partialf(x)=\left\{x*\inX*~:~\left\langlex*,x\right\rangle-\|x\|\geq\left\langlex*,z\right\rangle-\|z\|forallz\inX\right\}.
x*\in\partialf(x)
r\geq0
z:=rx
\left\langlex*,x\right\rangle-\|x\|\geq\left\langlex*,rx\right\rangle-\|rx\|=r\left[\left\langlex*,x\right\rangle-\|x\|\right],
r:=2
x*(x)\geq\|x\|
r:=
1{2} | |
x*(x)\leq\|x\|
x ≠ 0
| ||||
x |
\right)=1,
\left\|x*\right\|\geq1.
\partialf(x)\subseteq\left\{x*\inX*~:~x*(x)=\|x\|\right\},
\partialf(x)=\partialf(x)\cap\left\{x*\inX*~:~x*(x)=\|x\|\right\},
\partialf(x)=\left\{x*\inX*~:~x*(x)=\|x\|and\|z\|\geq\left\langlex*,z\right\rangleforallz\inX\right\},
\left\|x*\right\|\leq1
x*\in\partialf(x).