Converse nonimplication explained

In logic, converse nonimplication[1] is a logical connective which is the negation of converse implication (equivalently, the negation of the converse of implication).

Definition

Converse nonimplication is notated

P\nleftarrowQ

, or

P\not\subsetQ

, and is logically equivalent to

\neg(P\leftarrowQ)

and

\negP\wedgeQ

.

Truth table

The truth table of

A\nleftarrowB

.

Notation

Converse nonimplication is notated p \nleftarrow q, which is the left arrow from converse implication ( \leftarrow), negated with a stroke .

Alternatives include

\subset

, negated with a stroke .

Properties

falsehood-preserving: The interpretation under which all variables are assigned a truth value of 'false' produces a truth value of 'false' as a result of converse nonimplication

Natural language

Grammatical

Example,

If it rains (P) then I get wet (Q), just because I am wet (Q) does not mean it is raining, in reality I went to a pool party with the co-ed staff, in my clothes (~P) and that is why I am facilitating this lecture in this state (Q).

Rhetorical

Q does not imply P.

Colloquial

Boolean algebra

Converse Nonimplication in a general Boolean algebra is defined as q \nleftarrow p=q'p.

Example of a 2-element Boolean algebra: the 2 elements with 0 as zero and 1 as unity element, operators \sim as complement operator, \vee as join operator and \wedge as meet operator, build the Boolean algebra of propositional logic.

andandthen

\scriptstyle{y\nleftarrowx}\

means
(Negation)(Inclusive or)(And)(Converse nonimplication)

Example of a 4-element Boolean algebra: the 4 divisors of 6 with 1 as zero and 6 as unity element, operators

\scriptstyle{c

}\! (co-divisor of 6) as complement operator,

\scriptstyle{\vee}

(least common multiple) as join operator and

\scriptstyle{\wedge}

(greatest common divisor) as meet operator, build a Boolean algebra.
andandthen

\scriptstyle{y\nleftarrowx}\

means
(Co-divisor 6)(Least common multiple)(Greatest common divisor)(x's greatest divisor coprime with y)

Properties

Non-associative

r\nleftarrow(q\nleftarrowp)=(r\nleftarrowq)\nleftarrowp

if and only if

rp=0

  1. s5
(In a two-element Boolean algebra the latter condition is reduced to

r=0

or

p=0

). Hence in a nontrivial Boolean algebra Converse Nonimplication is nonassociative.\begin(r \nleftarrow q) \nleftarrow p&= r'q \nleftarrow p & \text \\&= (r'q)'p & \text \\&= (r + q')p & \text \\&= (r + r'q')p & \text \\&= rp + r'q'p \\&= rp + r'(q \nleftarrow p) & \text \\&= rp + r \nleftarrow (q \nleftarrow p) & \text \\\end

Clearly, it is associative if and only if

rp=0

.

Non-commutative

q\nleftarrowp=p\nleftarrowq

if and only if

q=p

  1. s6
. Hence Converse Nonimplication is noncommutative.

Neutral and absorbing elements

0\nleftarrowp=p

) and a right absorbing element (

{p\nleftarrow0=0}

).

1\nleftarrowp=0

,

p\nleftarrow1=p'

, and

p\nleftarrowp=0

.

qp

is the dual of converse nonimplication

q\nleftarrowp

  1. s7
.
Converse Nonimplication is noncommutative
StepMake use ofResulting in
s.1Definition

\scriptstyle{q\tilde{\leftarrow}p=q'p}\

s.2Definition

\scriptstyle{p\tilde{\leftarrow}q=p'q}\

s.3s.1 s.2

\scriptstyle{q\tilde{\leftarrow}p=p\tilde{\leftarrow}q\Leftrightarrowq'p=qp'}\

s.4

\scriptstyle{q}

\scriptstyle{=}

\scriptstyle{q.1}

s.5s.4.right - expand Unit element

\scriptstyle{=}

\scriptstyle{q.(p+p')}

s.6s.5.right - evaluate expression

\scriptstyle{=}

\scriptstyle{qp+qp'}

s.7s.4.left = s.6.right

\scriptstyle{q=qp+qp'}\

s.8

\scriptstyle{q'p=qp'}

\scriptstyle{}

\scriptstyle{qp+qp'=qp+q'p}

s.9s.8 - regroup common factors

\scriptstyle{}

\scriptstyle{q.(p+p')=(q+q').p}

s.10s.9 - join of complements equals unity

\scriptstyle{}

\scriptstyle{q.1=1.p}

s.11s.10.right - evaluate expression

\scriptstyle{}

\scriptstyle{q=p}

s.12s.8 s.11

\scriptstyle{q'p=qp'  ⇒  q=p}\

s.13

\scriptstyle{q=p  ⇒  q'p=qp'}\

s.14s.12 s.13

\scriptstyle{q=p\Leftrightarrowq'p=qp'}\

s.15s.3 s.14

\scriptstyle{q\tilde{\leftarrow}p=p\tilde{\leftarrow}q\Leftrightarrowq=p}\

Implication is the dual of Converse Nonimplication
StepMake use ofResulting in
s.1Definition

\scriptstyle{\operatorname{dual}(q\tilde{\leftarrow}p)}

\scriptstyle{=}

\scriptstyle{\operatorname{dual}(q'p)}

s.2s.1.right - .'s dual is +

\scriptstyle{=}

\scriptstyle{q'+p}

s.3s.2.right - Involution complement

\scriptstyle{=}

\scriptstyle{(q'+p)''}

s.4s.3.right - De Morgan's laws applied once

\scriptstyle{=}

\scriptstyle{(qp')'}

s.5s.4.right - Commutative law

\scriptstyle{=}

\scriptstyle{(p'q)'}

s.6s.5.right

\scriptstyle{=}

\scriptstyle{(p\tilde{\leftarrow}q)'}

s.7s.6.right

\scriptstyle{=}

\scriptstyle{p\leftarrowq}

s.8s.7.right

\scriptstyle{=}

\scriptstyle{qp}

s.9s.1.left = s.8.right

\scriptstyle{\operatorname{dual}(q\tilde{\leftarrow}p)=qp}\

Computer science

An example for converse nonimplication in computer science can be found when performing a right outer join on a set of tables from a database, if records not matching the join-condition from the "left" table are being excluded.[2]

References

Notes and References

  1. Lehtonen, Eero, and Poikonen, J.H.
  2. Web site: A Visual Explanation of SQL Joins. 11 October 2007. 24 March 2013. 15 February 2014. https://web.archive.org/web/20140215193839/http://www.codinghorror.com/blog/2007/10/a-visual-explanation-of-sql-joins.html. dead.