Convergence space explained

In mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a that satisfies certain properties relating elements of X with the family of filters on X. Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as, that do not arise from any topological space. Examples of convergences that are in general non-topological include convergence in measure and almost everywhere convergence. Many topological properties have generalizations to convergence spaces.

Besides its ability to describe notions of convergence that topologies are unable to, the category of convergence spaces has an important categorical property that the category of topological spaces lacks. The category of topological spaces is not an exponential category (or equivalently, it is not Cartesian closed) although it is contained in the exponential category of pseudotopological spaces, which is itself a subcategory of the (also exponential) category of convergence spaces.

Definition and notation

See also: Filters in topology and Ultrafilter.

Preliminaries and notation

Denote the power set of a set

X

by

\wp(X).

The or in

X

of a family of subsets

l{B}\subseteq\wp(X)

is defined as

l{B}\uparrow:=\left\{S\subseteqX~:~B\subseteqSforsomeB\inl{B}\right\}=cupB

} \left\

and similarly the of

l{B}

is

l{B}\downarrow:=\left\{S\subseteqB~:~B\inl{B}\right\}=cupB

} \wp(B). If

l{B}\uparrow=l{B}

(resp.

l{B}\downarrow=l{B}

) then

l{B}

is said to be (resp.) in

X.

For any families

l{C}

and

l{F},

declare that

l{C}\leql{F}

if and only if for every

C\inl{C},

there exists some

F\inl{F}

such that

F\subseteqC

or equivalently, if

l{F}\subseteq\wp(X),

then

l{C}\leql{F}

if and only if

l{C}\subseteql{F}\uparrow.

The relation

\leq

defines a preorder on

\wp(\wp(X)).

If

l{F}\geql{C},

which by definition means

l{C}\leql{F},

then

l{F}

is said to be

l{C}

and also

l{C},

and

l{C}

is said to be

l{F}.

The relation

\geq

is called . Two families

l{C}

and

l{F}

are called (

\geq

) if

l{C}\leql{F}

and

l{F}\leql{C}.

A is a non-empty subset

l{F}\subseteq\wp(X)

that is upward closed in

X,

closed under finite intersections, and does not have the empty set as an element (i.e.

\varnothing\not\inl{F}

). A is any family of sets that is equivalent (with respect to subordination) to filter or equivalently, it is any family of sets whose upward closure is a filter. A family

l{B}

is a prefilter, also called a, if and only if

\varnothing\not\inl{B}\varnothing

and for any

B,C\inl{B},

there exists some

A\inl{B}

such that

A\subseteqB\capC.

A is any non-empty family of sets with the finite intersection property; equivalently, it is any non-empty family

l{B}

that is contained as a subset of some filter (or prefilter), in which case the smallest (with respect to

\subseteq

or

\leq

) filter containing

l{B}

is called . The set of all filters (resp. prefilters, filter subbases, ultrafilters) on

X

will be denoted by

\operatorname{Filters}(X)

(resp.

\operatorname{Prefilters}(X),

\operatorname{FilterSubbases}(X),

\operatorname{UltraFilters}(X)

). The or filter on

X

at a point

x\inX

is the filter

\{x\}\uparrow.

Definition of (pre)convergence spaces

For any

\xi\subseteqX x \wp(\wp(X)),

if

l{F}\subseteq\wp(X)

then define

\lim{}\xil{F}:=\left\{x\inX~:~\left(x,l{F}\right)\in\xi\right\}

and if

x\inX

then define

\lim

-1
{}
\xi

(x):=\left\{l{F}\subseteq\wp(X)~:~\left(x,l{F}\right)\in\xi\right\}

so if

\left(x,l{F}\right)\inX x \wp(\wp(X))

then

x\in\lim{}\xil{F}

if and only if

\left(x,l{F}\right)\in\xi.

The set

X

is called the of

\xi

and is denoted by

\left|\xi\right|:=X.

A on a non-empty set

X

is a binary relation

\xi\subseteqX x \operatorname{Filters}(X)

with the following property:

  1. : if

    l{F},l{G}\in\operatorname{Filters}(X)

    then

    l{F}\leql{G}

    implies

    \lim{}\xil{F}\subseteq\lim{}\xil{G}

    • In words, any limit point of

    l{F}

    is necessarily a limit point of any finer/subordinate family

    l{G}\geql{F}.

and if in addition it also has the following property:

  1. : if

    x\inX

    then

    x\in\lim{}\xi\left(\{x\}\uparrow\right)

    • In words, for every

    x\inX,

    the principal/discrete ultrafilter at

    x

    converges to

    x.

then the preconvergence

\xi

is called a on

X.

A or a (resp. a) is a pair consisting of a set

X

together with a convergence (resp. preconvergence) on

X.

A preconvergence

\xi\subseteqX x \operatorname{Filters}(X)

can be canonically extended to a relation on

X x \operatorname{Prefilters}(X),

also denoted by

\xi,

by defining

\lim{}\xil{F}:=\lim{}\xi\left(l{F}\uparrow\right)

for all

l{F}\in\operatorname{Prefilters}(X).

This extended preconvergence will be isotone on

\operatorname{Prefilters}(X),

meaning that if

l{F},l{G}\in\operatorname{Prefilters}(X)

then

l{F}\leql{G}

implies

\lim{}\xil{F}\subseteq\lim{}\xil{G}.

Examples

Convergence induced by a topological space

Let

(X,\tau)

be a topological space with

X\varnothing.

If

l{F}\in\operatorname{Filters}(X)

then

l{F}

is said to to a point

x\inX

in

(X,\tau),

written

l{F}\tox

in

(X,\tau),

if

l{F}\geql{N}(x),

where

l{N}(x)

denotes the neighborhood filter of

x

in

(X,\tau).

The set of all

x\inX

such that

l{F}\tox

in

(X,\tau)

is denoted by

\lim{}(X,l{F},

\lim{}Xl{F},

or simply

\liml{F},

and elements of this set are called of

l{F}

in

(X,\tau).

The or

(X,\tau)

is the convergence on

X,

denoted by

\xi\tau,

defined for all

x\inX

and all

l{F}\in\operatorname{Filters}(X)

by:

x\in\lim

{}
\xi\tau

l{F}

if and only if

l{F}\tox

in

(X,\tau).

Equivalently, it is defined by

\lim

{}
\xi\tau

l{F}:=\lim{}(X,l{F}

for all

l{F}\in\operatorname{Filters}(X).

A (pre)convergence that is induced by some topology on

X

is called a ; otherwise, it is called a .

Power

Let

(X,\tau)

and

(Z,\sigma)

be topological spaces and let

C:=C\left((X,\tau);(Z,\sigma)\right)

denote the set of continuous maps

f:(X,\tau)\to(Z,\sigma).

The is the coarsest topology

\theta

on

C

that makes the natural coupling

\left\langlex,f\right\rangle=f(x)

into a continuous map

(X,\tau) x \left(C,\theta\right)\to(Z,\sigma).

The problem of finding the power has no solution unless

(X,\tau)

is locally compact. However, if searching for a convergence instead of a topology, then there always exists a convergence that solves this problem (even without local compactness). In other words, the category of topological spaces is not an exponential category (i.e. or equivalently, it is not Cartesian closed) although it is contained in the exponential category of pseudotopologies, which is itself a subcategory of the (also exponential) category of convergences.

Other named examples

Standard convergence on

R

: The is the convergence

\nu

on

X

defined for all

x\inX=R

and all

l{F}\in\operatorname{Filters}(X)

by:

x\in\lim{}\nul{F}

if and only if

l{F}~\geq~\left\{\left(x-

1{n},
x

+

1{n}
\right)

~:~n\inN\right\}.

Discrete convergence: The

\iotaX

on a non-empty set

X

is defined for all

x\inX

and all

l{F}\in\operatorname{Filters}(X)

by:

x\in\lim

{}
\iotaX

l{F}

if and only if

l{F}~=~\{x\}\uparrow.

A preconvergence

\xi

on

X

is a convergence if and only if

\xi\leq\iotaX.

Empty convergence: The

\varnothingX

on set non-empty

X

is defined for all

l{F}\in\operatorname{Filters}(X)

by:

\lim

{}
\varnothingX

l{F}:=\emptyset.

Although it is a preconvergence on

X,

it is a convergence on

X.

The empty preconvergence on

X\varnothing

is a non-topological preconvergence because for every topology

\tau

on

X,

the neighborhood filter at any given point

x\inX

necessarily converges to

x

in

(X,\tau).

Chaotic convergence: The

oX

on set non-empty

X

is defined for all

l{F}\in\operatorname{Filters}(X)

by:

\lim

{}
oX

l{F}:=X.

The chaotic preconvergence on

X

is equal to the canonical convergence induced by

X

when

X

is endowed with the indiscrete topology.

Properties

A preconvergence

\xi

on set non-empty

X

is called or if

\lim{}\xil{F}

is a singleton set for all

l{F}\in\operatorname{Filters}(X).

It is called if

\lim{}\xi\left(\{x\}\uparrow\right)\subseteq\{x\}

for all

x\inX

and it is called if

\operatorname{lim}-1{}\xi(x)\operatorname{lim}-1{}\xi(y)

for all distinct

x,y\inX.

Every preconvergence on a finite set is Hausdorff. Every convergence on a finite set is discrete.

While the category of topological spaces is not exponential (i.e. Cartesian closed), it can be extended to an exponential category through the use of a subcategory of convergence spaces.

References