In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
pn(x;a,b,c,d)=
| ||||
i |
{}3F2\left(\begin{array}{c}-n,n+a+b+c+d-1,a+ix\ a+c,a+d\end{array};1\right)
give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials Qn(x;a,b,c), and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.
The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function
w(x)=\Gamma(a+ix)\Gamma(b+ix)\Gamma(c-ix)\Gamma(d-ix).
\begin{align}& | 1 |
2\pi |
infty | |
\int | |
-infty |
\Gamma(a+ix)\Gamma(b+ix)\Gamma(c-ix)\Gamma(d-ix)pm(x;a,b,c,d)p
|
\deltan\end{align}
\Re(a)>0
\Re(b)>0
\Re(c)>0
\Re(d)>0
c=\overline{a}
d=\overline{b}
The sequence of continuous Hahn polynomials satisfies the recurrence relation[4]
xpn(x)=pn+1(x)+i(An+Cn)pn(x)-An-1Cnpn-1(x),
\begin{align} where &p | ||||
|
pn(x;a,b,c,d),\\ &A
|
,\\ and &C | ||||
|
. \end{align}
The continuous Hahn polynomials are given by the Rodrigues-like formula[5]
\begin{align}&\Gamma(a+ix)\Gamma(b+ix)\Gamma(c-ix)\Gamma(d-ix)p | ||||
|
dn | \left(\Gamma\left(a+ | |
dxn |
n | +ix\right)\Gamma\left(b+ | |
2 |
n | +ix\right)\Gamma\left(c+ | |
2 |
n | -ix\right)\Gamma\left(d+ | |
2 |
n | |
2 |
-ix\right)\right).\end{align}
The continuous Hahn polynomials have the following generating function:[6]
infty | |
\begin{align}&\sum | |
n=0 |
\Gamma(n+a+b+c+d)\Gamma(a+c+1)\Gamma(a+d+1) | |
\Gamma(a+b+c+d)\Gamma(n+a+c+1)\Gamma(n+a+d+1) |
(-it)n
1-a-b-c-d | |
p | |
n(x;a,b,c,d)\\ & =(1-t) |
{}3F2\left(\begin{array}{c}
12(a+b+c+d-1), | |||
|
a+d\end{array};-
4t | |
(1-t)2 |
\right).\end{align}
infty | |
\sum | |
n=0 |
\Gamma(a+c+1)\Gamma(b+d+1) | |
\Gamma(n+a+c+1)\Gamma(n+b+d+1) |
tnpn(x;a,b,c,d)=1F1\left(\begin{array}{c}a+ix\ a+c\end{array};-it\right)1F1\left(\begin{array}{c}d-ix\ b+d\end{array};it\right).
pn\left(x;\tfrac12,\tfrac12,\tfrac12,\tfrac12\right)=inn!Fn\left(2ix\right).
(\alpha,\beta) | |
P | |
n |
=\limt\toinftyt-npn\left(\tfrac12xt;\tfrac12(\alpha+1-it),\tfrac12(\beta+1+it),\tfrac12(\alpha+1+it),\tfrac12(\beta+1-it)\right).