In algebra, the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in generalized continued fractions.
The n-th continuant
Kn(x1, x2, \ldots, xn)
K0=1;
K1(x1)=x1;
Kn(x1, x2, \ldots, xn)=xnKn-1(x1, x2, \ldots, xn-1)+Kn-2(x1, x2, \ldots, xn-2).
Kn(x1, x2, \ldots, xn)
K5(x1, x2, x3, x4, x5)=x1x2x3x4x5 + x3x4x5 + x1x4x5 + x1x2x5 + x1x2x3 + x1 + x3 + x5.
It follows that continuants are invariant with respect to reversing the order of indeterminates:
Kn(x1, \ldots, xn)=Kn(xn, \ldots, x1).
Kn(x1, x2, \ldots, xn)= \det\begin{pmatrix}x1&1&0& … &0\ -1&x2&1&\ddots&\vdots\\ 0&-1&\ddots&\ddots&0\\ \vdots&\ddots&\ddots&\ddots&1\ 0& … &0&-1&xn \end{pmatrix}.
Kn(1, \ldots, 1)=Fn+1
Kn(x1, \ldots, xn) | |
Kn-1(x2, \ldots, xn) |
=x1+
Kn-2(x3, \ldots, xn) | |
Kn-1(x2, \ldots, xn) |
.
Kn(x1, \ldots,xn) | |
Kn-1(x2, \ldots, xn) |
=[x1; x2, \ldots, xn]=x1+
1 | |||||||||
|
\begin{pmatrix}Kn(x1, \ldots, xn)&Kn-1(x1, \ldots, xn-1)\ Kn-1(x2, \ldots, xn)&Kn-2(x2, \ldots, xn-1)\end{pmatrix}= \begin{pmatrix}x1&1\ 1&0\end{pmatrix} x \ldots x \begin{pmatrix}xn&1\ 1&0\end{pmatrix}
Kn(x1, \ldots, xn) ⋅ Kn-2(x2, \ldots, xn-1)-Kn-1(x1, \ldots, xn-1) ⋅ Kn-1(x2, \ldots, xn)=(-1)n.
Kn-1(x2, \ldots, xn) ⋅ Kn+2(x1, \ldots, xn+2)-Kn(x1, \ldots, xn) ⋅ Kn+1(x2, \ldots, xn+2)=(-1)n+1xn+2.
A generalized definition takes the continuant with respect to three sequences a, b and c, so that K(n) is a polynomial of a1,...,an, b1,...,bn-1 and c1,...,cn-1. In this case the recurrence relation becomes
K0=1;
K1=a1;
Kn=anKn-1-bn-1cn-1Kn-2.
Since br and cr enter into K only as a product brcr there is no loss of generality in assuming that the br are all equal to 1.
The generalized continuant is precisely the determinant of the tridiagonal matrix
\begin{pmatrix} a1&b1&0&\ldots&0&0\\ c1&a2&b2&\ldots&0&0\\ 0&c2&a3&\ldots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\ldots&an-1&bn-1\\ 0&0&0&\ldots&cn-1&an \end{pmatrix}.
In Muir's book the generalized continuant is simply called continuant.
. Thomas Muir . Thomas Muir (mathematician) . A treatise on the theory of determinants . registration . 1960 . . 516 - 525 .
. Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1 . George Chrystal . George Chrystal . American Mathematical Society . 1999 . 0-8218-1649-7 . 500 .