Composite bundles
Y\to\Sigma\toX
X=R
Y\toX
Y\to\Sigma
\Sigma\toX
In differential geometry by a composite bundle is meant the composition
\pi:Y\to\Sigma\toX (1)
of fiber bundles
\piY\Sigma:Y\to\Sigma, \pi\Sigma:\Sigma\toX.
It is provided with bundle coordinates
(xλ,\sigmam,yi)
(xλ,\sigmam)
\Sigma\toX
\sigmam
yi
The following fact provides the above-mentioned physical applications of composite bundles. Given the composite bundle (1), let
h
\Sigma\toX
Yh=h*Y
X
Y\toX
For instance, let
P\toX
G
H
P\toP/H\toX
P\toP/H
H
P/H\toX
P\toX
h
P/H\toX
h*P
P
H
P/H\toX
Given the composite bundle
Y\to\Sigma\toX
J1\Sigma
1 | |
J | |
\Sigma |
Y
J1Y
\Sigma\toX
Y\to\Sigma
Y\toX
(xλ,\sigmam,
m | |
\sigma | |
λ) |
(xλ,\sigmam,yi,\widehat
i | |
y | |
λ, |
i | |
y | |
m), |
(xλ,\sigmam,yi,
m | |
\sigma | |
λ |
i | |
,y | |
λ). |
There is the canonical map
1\Sigma x | |
J | |
\Sigma |
1 | |
J | |
\Sigma |
Y\toYJ1Y,
i | |
y | |
m |
m | |
\sigma | |
λ |
+\widehat
i | |
y | |
λ |
This canonical map defines the relations between connections on fiber bundles
Y\toX
Y\to\Sigma
\Sigma\toX
\gamma=dxλ ⊗ (\partialλ
m\partial | |
+\gamma | |
m |
+
i\partial | |
\gamma | |
i), |
λ ⊗ | |
A | |
\Sigma=dx |
(\partialλ+
i\partial | |
A | |
i) |
+d\sigmam ⊗ (\partialm+
i\partial | |
A | |
i), |
\Gamma=dxλ ⊗ (\partialλ+
m\partial | |
\Gamma | |
m). |
A connection
A\Sigma
Y\to\Sigma
\Gamma
\Sigma\to X
\gamma=dxλ ⊗ (\partialλ
m\partial | |
+\Gamma | |
m |
+
i | |
(A | |
λ |
m)\partial | |
+ A | |
i) |
on a composite bundle
Y\toX
\gamma\tau
Y
\tau
X
\gamma
A\Sigma(\Gamma\tau)
\tau
\Sigma
\Gamma
Y
A\Sigma
Given the composite bundle
Y
Y
0\toV\SigmaY\toVY\toY x \SigmaV\Sigma\to0, (2)
where
V\SigmaY
*Y | |
V | |
\Sigma |
Y\to\Sigma
A\Sigma
Y\to\Sigma
A\Sigma:TY\supsetVY\ni
y |
i\partial | |
i |
+
\sigma |
m\partial | |
m |
\to(
y |
i
m)\partial | |
-A | |
i |
of the exact sequence (2). Using this splitting, one can construct a first order differential operator
\widetildeD:J1Y\to
*X ⊗ | |
T | |
Y |
V\SigmaY, \widetildeD=dxλ ⊗ (y
i | |
λ- |
i | |
A | |
λ |
m | |
-A | |
λ)\partial |
i,
on a composite bundle
Y\toX
Let
h
\Sigma\toX
h*Y\subsetY
X
A\Sigma
i | |
A | |
m\circ |
h)\partialλhm +(A\circ
i | |
h) | |
λ)\partial |
i]
on
h*Y
\widetildeD
J1h*Y\subsetJ1Y
Ah | |
D |
h*Y
Ah