In mathematics and string theory, a conifold is a generalization of a manifold. Unlike manifolds, conifolds can contain conical singularities, i.e. points whose neighbourhoods look like cones over a certain base. In physics, in particular in flux compactifications of string theory, the base is usually a five-dimensional real manifold, since the typically considered conifolds are complex 3-dimensional (real 6-dimensional) spaces.
Conifolds are important objects in string theory: Brian Greene explains the physics of conifolds in Chapter 13 of his book The Elegant Universe—including the fact that the space can tear near the cone, and its topology can change. This possibility was first noticed by and employed by to prove that conifolds provide a connection between all (then) known Calabi–Yau compactifications in string theory; this partially supports a conjecture by whereby conifolds connect all possible Calabi–Yau complex 3-dimensional spaces.
CP4
CP4
5-5\psi | |
z | |
5 |
z1z2z3z4z5=0
in terms of homogeneous coordinates
zi
CP4
\psi
\psi
zi
S2 x S3
In the context of string theory, the geometrically singular conifolds can be shown to lead to completely smooth physics of strings. The divergences are "smeared out" by D3-branes wrapped on the shrinking three-sphere in Type IIB string theory and by D2-branes wrapped on the shrinking two-sphere in Type IIA string theory, as originally pointed out by . As shown by, this provides the string-theoretic description of the topology-change via the conifold transition originally described by, who also invented the term "conifold" and the diagramfor the purpose. The two topologically distinct ways of smoothing a conifold are thus shown to involve replacing the singular vertex (node) by either a 3-sphere (by way of deforming the complex structure) or a 2-sphere (by way of a "small resolution"). It is believed that nearly all Calabi–Yau manifolds can be connected via these "critical transitions", resonating with Reid's conjecture.