In the mathematical theory of conformal and quasiconformal mappings, the extremal length of a collection of curves
\Gamma
\Gamma
D
\Gamma
D
f:D\toD'
\Gamma
\Gamma
f
\Gamma
\Gamma
To define extremal length, we need to first introduce several related quantities.Let
D
\Gamma
D
\rho:D\to[0,infty]
\gamma
L\rho(\gamma):=\int\gamma\rho|dz|
denote the
\rho
\gamma
|dz|
L\rho(\gamma)=infty
\gamma:I\toD
I
\int\gamma\rho|dz|
\rho(\gamma(t))
I
J\subsetI
\gamma
J
\intI\rho(\gamma(t))d{length
{length
\gamma
\{s\inI:s\let\}
L\rho(\Gamma):=inf\gamma\in\GammaL\rho(\gamma).
The area of
\rho
A(\rho):=\intD\rho2dxdy,
\Gamma
EL(\Gamma):=\sup\rho
| |||||||
A(\rho) |
,
where the supremum is over all Borel-measureable
\rho:D\to[0,infty]
0<A(\rho)<infty
\Gamma
\Gamma0
\Gamma
EL(\Gamma)
EL(\Gamma0)
The term (conformal) modulus of
\Gamma
1/EL(\Gamma)
The extremal distance in
D
\overlineD
D
In this section the extremal length is calculated in several examples. The first three of these examples are actually useful in applications of extremal length.
Fix some positive numbers
w,h>0
R
R=(0,w) x (0,h)
\Gamma
\gamma:(0,1)\toR
\limt\to\gamma(t)
\{0\} x [0,h]
\limt\to\gamma(t)
\{w\} x [0,h]
\gamma
EL(\Gamma)=w/h
First, we may take
\rho=1
R
\rho
A(\rho)=wh
L\rho(\Gamma)=w
EL(\Gamma)
EL(\Gamma)\gew/h
The opposite inequality is not quite so easy. Consider an arbitrary Borel-measurable
\rho:R\to[0,infty]
\ell:=L\rho(\Gamma)>0
y\in(0,h)
\gammay(t)=iy+wt
\R2
\gammay\in\Gamma
\ell\leL\rho(\gammay)
\ell\le
1 | |
\int | |
0 |
\rho(iy+wt)wdt.
y\in(0,h)
h\ell\le
1\rho(iy+wt)wdtdy | |
\int | |
0 |
x=wt
h\ell\le
w\rho(x+iy)dxdy | |
\int | |
0 |
\lel(\intR
1/2 | |
\rho | |
Rdxdyr) |
=l(whA(\rho)r)1/2
\ell2/A(\rho)\lew/h
EL(\Gamma)\lew/h
As the proof shows, the extremal length of
\Gamma
\{\gammay:y\in(0,h)\}
It should be pointed out that the extremal length of the family of curves
\Gamma'
R
R
EL(\Gamma')=h/w
EL(\Gamma)EL(\Gamma')=1
EL(\Gamma)
\rho
2/A(\rho) | |
L | |
\rho(\Gamma) |
\rho
EL(\Gamma)EL(\Gamma')=1
EL(\Gamma')
EL(\Gamma)
Let
r1
r2
0<r1<r2<infty
A
A:=\{z\inC:r1<|z|<r2\}
C1
C2
A
C1:=\{z:|z|=r1\}
C2:=\{z:|z|=r2\}
A
C1
C2
\Gamma
\gamma\subsetA
C1
C2
To obtain a lower bound on
EL(\Gamma)
\rho(z)=1/|z|
\gamma\in\Gamma
C1
C2
\int\gamma|z|-1ds\ge\int\gamma|z|-1d|z|=\int\gammadlog|z|=log(r2/r1).
A(\rho)=\intA|z|-2dxdy=
2\pi | |
\int | |
0 |
r2 | |
\int | |
r1 |
r-2rdrd\theta=2\pilog(r2/r1).
EL(\Gamma)\ge
log(r2/r1) | |
2\pi |
.
We now see that this inequality is really an equality by employing an argument similar to the one given above for the rectangle. Consider an arbitrary Borel-measurable
\rho
\ell:=L\rho(\Gamma)>0
\theta\in[0,2\pi)
\gamma\theta:(r1,r2)\toA
i\theta | |
\gamma | |
\theta(r)=e |
r
\ell\le\int | |
\gamma\theta |
\rhods
r2 | |
=\int | |
r1 |
\rho(ei\thetar)dr.
\theta
2\pi\ell\le\intA\rhodrd\theta\lel(\intA\rho2rdrd\thetar)1/2
2\pi | |
l(\int | |
0 |
r2 | |
\int | |
r1 |
1 | |
rdrd\thetar) |
1/2.
4\pi2\ell2\leA(\rho) ⋅ 2\pilog(r2/r1).
EL(\Gamma)\le(2\pi)-1log(r2/r1)
EL(\Gamma)= | log(r2/r1) |
2\pi |
.
Let
r1,r2,C1,C2,\Gamma
A
\Gamma*
C1
C2
| ||||
EL(\Gamma |
=EL(\Gamma)-1.
In the above examples, the extremal
\rho
2/A(\rho) | |
L | |
\rho(\Gamma) |
\rho
\R3
x\mapsto-x
\Gamma
\Gamma
\pi2/(2\pi)=\pi/2
If
\Gamma
z0
EL(\Gamma)=infty
\rho(z):=\begin{cases}(-|z-z0|log
-1 | |
|z-z | |
0|) |
&|z-z0|<1/2,\\ 0&|z-z0|\ge1/2,\end{cases}
A(\rho)<infty
L\rho(\gamma)=infty
\gamma\in\Gamma
The extremal length satisfies a few simple monotonicity properties. First, it is clear that if
\Gamma1\subset\Gamma2
EL(\Gamma1)\geEL(\Gamma2)
\gamma1\in\Gamma1
\gamma2\in\Gamma2
\gamma2
\gamma1
EL(\Gamma1\cup\Gamma2)\ge
-1 | |
l(EL(\Gamma | |
1) |
-1 | |
+EL(\Gamma | |
2) |
r)-1.
EL(\Gamma1)=0
EL(\Gamma2)=0
0
\Gamma1\cup\Gamma2
\rho1,\rho2
L | |
\rhoj |
(\Gammaj)\ge1
j=1,2
\rho=max\{\rho1,\rho2\}
L\rho(\Gamma1\cup\Gamma2)\ge1
2)dxdy=A(\rho | |
A(\rho)=\int\rho | |
1)+A(\rho |
2)
Let
f:D\toD*
\Gamma
D
\Gamma*:=\{f\circ\gamma:\gamma\in\Gamma\}
f
EL(\Gamma)=EL(\Gamma*)
Here is a proof of conformal invariance. Let
\Gamma0
\gamma\in\Gamma
f\circ\gamma
*=\{f\circ\gamma:\gamma\in\Gamma | |
\Gamma | |
0\} |
\Gamma*
\rho*:D*\to[0,infty]
\rho(z)=|f'(z)|\rho*l(f(z)r).
w=f(z)
A(\rho)=\intD\rho(z)2dzd\barz=\intD\rho*(f(z))2|f'(z)|2dzd\barz=
\int | |
D* |
\rho*(w)2dwd\barw=A(\rho*).
\gamma\in\Gamma0
\gamma*:=f\circ\gamma
L\rho(\gamma)=\int\gamma\rho*l(f(z)r)|f'(z)||dz|=
\int | |
\gamma* |
\rho(w)|dw|=L | |
\rho* |
(\gamma*).
\gamma
I
\ell(t)
\gamma
I\cap(-infty,t]
\ell*(t)
\gamma*
\gamma
d\ell*(t)=|f'(\gamma(t))|d\ell(t)
L\rho(\gamma)=L
\rho* |
(\gamma*)
EL(\Gamma0)\ge
*)=EL(\Gamma | |
EL(\Gamma | |
0 |
*).
\Gamma
\Gamma*
EL(\Gamma)=EL(\Gamma*)
f
\Gamma
\Gamma*
Now let
\hat\Gamma
\gamma\in\Gamma
f\circ\gamma
EL(\hat\Gamma)=infty
\rho(z)=|f'(z)|h(|f(z)|)
h(r)=l(rlog(r+2)r)-1
A(\rho)=
\int | |
D* |
h(|w|)2dwd\barw\le
2\pi | |
\int | |
0 |
infty | |
\int | |
0 |
(rlog(r+2))-2rdrd\theta<infty.
\gamma\in\hat\Gamma
r\in(0,infty)
f\circ\gamma
\{z:|z|<r\}
L\rho(\gamma)\geinf\{h(s):s\in[0,r]\}length(f\circ\gamma)=infty
\gamma\in\hat\Gamma
f\circ\gamma
t | |
H(t):=\int | |
0 |
h(s)ds
L\rho(\gamma)
t\mapstoH(|f\circ\gamma(t)|)
\R
\R
\limt\toinftyH(t)=infty
L\rho(\gamma)=infty
EL(\hat\Gamma)=infty
Using the results of the previous section, we have
EL(\Gamma)=EL(\Gamma0\cup\hat\Gamma)\geEL(\Gamma0)
EL(\Gamma0)\geEL(\Gamma*)
EL(\Gamma)\geEL(\Gamma*)
By the calculation of the extremal distance in an annulus and the conformalinvariance it follows that the annulus
\{z:r<|z|<R\}
0\ler<R\leinfty
\{w:r*<|w|<R*\}
Rr\ne | |||
|
The notion of extremal length adapts to the study of various problems in dimensions 3 and higher, especially in relation to quasiconformal mappings.
Suppose that
G=(V,E)
\Gamma
G
\rho:E\to[0,infty)
\rho
\rho(e)
A(\rho)
\sume\in\rho(e)2
\Gamma
G
Another notion of discrete extremal length that is appropriate in other contexts is vertex extremal length, where
\rho:V\to[0,infty)
A(\rho):=\sumv\in\rho(v)2
\rho(v)