Conflict-driven clause learning explained

In computer science, conflict-driven clause learning (CDCL) is an algorithm for solving the Boolean satisfiability problem (SAT). Given a Boolean formula, the SAT problem asks for an assignment of variables so that the entire formula evaluates to true. The internal workings of CDCL SAT solvers were inspired by DPLL solvers. The main difference between CDCL and DPLL is that CDCL's backjumping is non-chronological.

Conflict-driven clause learning was proposed by Marques-Silva and Karem A. Sakallah (1996, 1999)[1] [2] and Bayardo and Schrag (1997).[3]

Background

Boolean satisfiability problem

See main article: Boolean satisfiability problem. The satisfiability problem consists in finding a satisfying assignment for a given formula in conjunctive normal form (CNF).

An example of such a formula is:

((not A) or (not C))   and   (B or C),or, using a common notation:[4]

(lnotA\lorlnotC)\land(B\lorC)

where A,B,C are Boolean variables,

lnotA

,

lnotC

,

B

, and

C

are literals, and

lnotA\lorlnotC

and

B\lorC

are clauses.

A satisfying assignment for this formula is e.g.:

A=False,B=False,C=True

since it makes the first clause true (since

lnotA

is true) as well as the second one (since

C

is true).

This examples uses three variables (A, B, C), and there are two possible assignments (True and False) for each of them. So one has

23=8

possibilities. In this small example, one can use brute-force search to try all possible assignments and check if they satisfy the formula. But in realistic applications with millions of variables and clauses brute force search is impractical. The responsibility of a SAT solver is to find a satisfying assignment efficiently and quickly by applying different heuristics for complex CNF formulas.

Unit clause rule (unit propagation)

See main article: Unit propagation. If a clause has all but one of its literals or variables evaluated at False, then the free literal must be True in order for the clause to be True. For example, if the below unsatisfied clause is evaluated with

A=False

and

B=False

we must have

C=True

in order for the clause

(A\lorB\lorC)

to be true.

The iterated application of the unit clause rule is referred to as unit propagation or Boolean constraint propagation (BCP).

Resolution

See main article: Resolution (logic). Consider two clauses

(A\lorB\lorC)

and

(\negC\lorD\lor\negE)

.The clause

(A\lorB\lorD\lor\negE)

, obtained by merging the two clauses and removing both

\negC

and

C

, is called the resolvent of the two clauses.

Algorithm

Conflict-driven clause learning works as follows.

  1. Select a variable and assign True or False. This is called decision state. Remember the assignment.
  2. Apply Boolean constraint propagation (unit propagation).
  3. Build the implication graph.
  4. If there is any conflict
    1. Find the cut in the implication graph that led to the conflict
    2. Derive a new clause which is the negation of the assignments that led to the conflict
    3. Non-chronologically backtrack ("back jump") to the appropriate decision level, where the first-assigned variable involved in the conflict was assigned
  5. Otherwise continue from step 1 until all variable values are assigned.

Example

A visual example of CDCL algorithm:[4]

Completeness

DPLL is a sound and complete algorithm for SAT. CDCL SAT solvers implement DPLL, but can learn new clauses and backtrack non-chronologically. Clause learning with conflict analysis affects neither soundness nor completeness. Conflict analysis identifies new clauses using the resolution operation. Therefore, each learnt clause can be inferred from the original clauses and other learnt clauses by a sequence of resolution steps. If cN is the new learnt clause, then ϕ is satisfiable if and only if ϕ ∪ is also satisfiable. Moreover, the modified backtracking step also does not affect soundness or completeness, since backtracking information is obtained from each new learnt clause.[5]

Applications

The main application of CDCL algorithm is in different SAT solvers including:

The CDCL algorithm has made SAT solvers so powerful that they are being used effectively in several real world application areas like AI planning, bioinformatics, software test pattern generation, software package dependencies, hardware and software model checking, and cryptography.

Related algorithms

Related algorithms to CDCL are the Davis–Putnam algorithm and DPLL algorithm. The DP algorithm uses resolution refutation and it has potential memory access problem. Whereas the DPLL algorithm is OK for randomly generated instances, it is bad for instances generated in practical applications. CDCL is a more powerful approach to solve such problems in that applying CDCL provides less state space search in comparison to DPLL.

References

Notes and References

  1. Book: J.P. Marques-Silva . Karem A. Sakallah . GRASP-A New Search Algorithm for Satisfiability . Digest of IEEE International Conference on Computer-Aided Design (ICCAD) . 220–227 . 10.1109/ICCAD.1996.569607 . November 1996 . 978-0-8186-7597-3 . 10.1.1.49.2075 .
  2. J.P. Marques-Silva . Karem A. Sakallah . GRASP: A Search Algorithm for Propositional Satisfiability . IEEE Transactions on Computers . 48 . 5 . 506–521 . May 1999 . 10.1109/12.769433 . 2014-11-29 . 2016-03-04 . https://web.archive.org/web/20160304113135/http://www.broadinstitute.org/~ilya/area/grasp.pdf . dead .
  3. Book: Roberto J. Bayardo Jr. . Robert C. Schrag . Using CSP look-back techniques to solve real world SAT instances . Proc. 14th Nat. Conf. on Artificial Intelligence (AAAI) . 203–208 . http://cse-wiki.unl.edu/wiki/images/0/06/Using_CSP_Look-Back_Techniques_to_Solve_Real-World_SAT_Instances.pdf . 1997 .
  4. In the pictures below, "

    +

    " is used to denote "or", multiplication to denote "and", and a postfix "

    '

    " to denote "not".
  5. Book: Handbook of Satisfiability. February 2009. IOS Press. 978-1-60750-376-7. 138. Joao. Marques-Silva. Ines. Lynce. Sharad. Malik.
  6. Web site: Glucose's home page.