Conductance (graph theory) explained

In theoretical computer science, graph theory, and mathematics, the conductance is a parameter of a Markov chain that is closely tied to its mixing time, that is, how rapidly the chain converges to its stationary distribution, should it exist. Equivalently, the conductance can be viewed as a parameter of a directed graph, in which case it can be used to analyze how quickly random walks in the graph converge.

The conductance of a graph is closely related to the Cheeger constant of the graph, which is also known as the edge expansion or the isoperimetic number. However, due to subtly different definitions, the conductance and the edge expansion do not generally coincide if the graphs are not regular. On the other hand, the notion of electrical conductance that appears in electrical networks is unrelated to the conductance of a graph.

History

The conductance was first defined by Mark Jerrum and Alistair Sinclair in 1988 to prove that the permanent of a matrix with entries from