Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst
q\%
Expected shortfall is also called conditional value at risk (CVaR),[1] average value at risk (AVaR), expected tail loss (ETL), and superquantile.[2]
ES estimates the risk of an investment in a conservative way, focusing on the less profitable outcomes. For high values of
q
q
q
q
Expected shortfall is considered a more useful risk measure than VaR because it is a coherent spectral measure of financial portfolio risk. It is calculated for a given quantile-level
q
q
If
X\inLp(l{F})
0<\alpha<1
\operatorname{ES}\alpha(X)=-
1 | |
\alpha |
\alpha | |
\int | |
0 |
\operatorname{VaR}\gamma(X)d\gamma
where
\operatorname{VaR}\gamma
\operatorname{ES}\alpha(X)=-
1 | |
\alpha |
\left(\operatornameE[X
1 | |
\{X\leqx\alpha\ |
where
x\alpha=inf\{x\inR:P(X\leqx)\geq\alpha\}=-\operatorname{VaR}\alpha(X)
\alpha
1A(x)=\begin{cases}1&ifx\inA\ 0&else\end{cases}
The dual representation is
\operatorname{ES}\alpha(X)=infQ\alpha}EQ[X]
where
l{Q}\alpha
P
dQ | |
dP |
\leq\alpha-1
dQ | |
dP |
Q
P
Expected shortfall can be generalized to a general class of coherent risk measures on
Lp
Lq
If the underlying distribution for
X
\operatorname{TCE}\alpha(X)=E[-X\midX\leq-\operatorname{VaR}\alpha(X)]
Informally, and non-rigorously, this equation amounts to saying "in case of losses so severe that they occur only alpha percent of the time, what is our average loss".
Expected shortfall can also be written as a distortion risk measure given by the distortion function
g(x)=\begin{cases}
x | |
1-\alpha |
&if0\leqx<1-\alpha,\ 1&if1-\alpha\leqx\leq1.\end{cases}
Example 1. If we believe our average loss on the worst 5% of the possible outcomes for our portfolio is EUR 1000, then we could say our expected shortfall is EUR 1000 for the 5% tail.
Example 2. Consider a portfolio that will have the following possible values at the end of the period:
probability of event | ending value of the portfolio | |
---|---|---|
10% | 0 | |
30% | 80 | |
40% | 100 | |
20% | 150 |
Now assume that we paid 100 at the beginning of the period for this portfolio. Then the profit in each case is (ending value−100) or:
probability of event | profit | |
---|---|---|
10% | −100 | |
30% | −20 | |
40% | 0 | |
20% | 50 |
From this table let us calculate the expected shortfall
\operatorname{ES}q
q
q | expected shortfall \operatorname{ES}q | |
---|---|---|
5% | 100 | |
10% | 100 | |
20% | 60 | |
30% | 46.6 | |
40% | 40 | |
50% | 32 | |
60% | 26.6 | |
80% | 20 | |
90% | 12.2 | |
100% | 6 |
To see how these values were calculated, consider the calculation of
\operatorname{ES}0.05
Now consider the calculation of
\operatorname{ES}0.20
| |||||||||
|
=-60.
Similarly for any value of
q
q
-\operatorname{ES}0.20
As a final example, calculate
-\operatorname{ES}1
0.1(-100)+0.3(-20)+0.4 ⋅ 0+0.2 ⋅ 50=-6.
The value at risk (VaR) is given below for comparison.
q | \operatorname{VaR}q | |
---|---|---|
0\%\leq<10\% | −100 | |
10\%\leq<40\% | −20 | |
40\%\leq<80\% | 0 | |
80\%\leq\le100\% | 50 |
The expected shortfall
\operatorname{ES}q
q
The 100%-quantile expected shortfall
\operatorname{ES}1
For a given portfolio, the expected shortfall
\operatorname{ES}q
\operatorname{VaR}q
q
Expected shortfall, in its standard form, is known to lead to a generally non-convex optimization problem. However, it is possible to transform the problem into a linear program and find the global solution.[9] This property makes expected shortfall a cornerstone of alternatives to mean-variance portfolio optimization, which account for the higher moments (e.g., skewness and kurtosis) of a return distribution.
Suppose that we want to minimize the expected shortfall of a portfolio. The key contribution of Rockafellar and Uryasev in their 2000 paper is to introduce the auxiliary function
F\alpha(w,\gamma)
\gamma=\operatorname{VaR}\alpha(X)
\ell(w,x)
w\inRp
F\alpha(w,\gamma)
\gamma
J
\ell(w,xj)=-wTxj
Closed-form formulas exist for calculating the expected shortfall when the payoff of a portfolio
X
L=-X
-\operatorname{VaR}\alpha(X)
\operatorname{ES}\alpha(X)=E[-X\midX\leq-\operatorname{VaR}\alpha(X)]=-
1 | |
\alpha |
\alpha | |
\int | |
0 |
\operatorname{VaR}\gamma(X)d\gamma=-
1 | |
\alpha |
-\operatorname{VaR | |
\int | |
\alpha(X)} |
xf(x)dx.
Typical values of in this case are 5% and 1%.
For engineering or actuarial applications it is more common to consider the distribution of losses
L=-X
\operatorname{VaR}\alpha(L)
\alpha
\operatorname{ES}\alpha(L) =\operatornameE[L\midL\geq\operatorname{VaR}\alpha(L)] =
1 | |
1-\alpha |
1 | |
\int | |
\alpha |
\operatorname{VaR}\gamma(L)d\gamma =
1 | |
1-\alpha |
+infty | |
\int | |
\operatorname{VaR |
\alpha(L)}yf(y)dy.
Since some formulas below were derived for the left-tail case and some for the right-tail case, the following reconciliations can be useful:
\operatorname{ES}\alpha(X) =-
1 | |
\alpha |
\operatornameE[X]+
1-\alpha | |
\alpha |
\operatorname{ES}\alpha(L)and\operatorname{ES}\alpha(L) =
1 | |
1-\alpha |
\operatornameE[L]+
\alpha | |
1-\alpha |
\operatorname{ES}\alpha(X).
If the payoff of a portfolio
X
f(x)=
1 | |
\sqrt{2\pi |
| ||||
\sigma}e |
\operatorname{ES}\alpha(X)=-\mu+\sigma
\varphi(\Phi-1(\alpha)) | |
\alpha |
\varphi(x)= | 1 |
\sqrt{2\pi |
\Phi(x)
\Phi-1(\alpha)
If the loss of a portfolio
L
\operatorname{ES}\alpha(L)=\mu+\sigma
\varphi(\Phi-1(\alpha)) | |
1-\alpha |
If the payoff of a portfolio
X
f(x)=
| |||||
|
\sigma}\left(1+
1 | \left( | |
\nu |
x-\mu | |
\sigma |
\right)2\right)
| ||||
\operatorname{ES}\alpha(X)=-\mu+\sigma
\nu+(\Tau-1(\alpha))2 | |
\nu-1 |
\tau(\Tau-1(\alpha)) | |
\alpha |
\tau(x)= |
| ||||
|
\Tau(x)
\Tau-1(\alpha)
If the loss of a portfolio
L
\operatorname{ES}\alpha(L)=\mu+\sigma
\nu+(\Tau-1(\alpha))2 | |
\nu-1 |
\tau(\Tau-1(\alpha)) | |
1-\alpha |
If the payoff of a portfolio
X
f(x)=
1 | |
2b |
e-|x-\mu|/b
and the c.d.f.
F(x)=\begin{cases} 1-
1 | |
2 |
e-(x-\mu)/b&ifx\geq\mu,\\[4pt]
1 | |
2 |
e(x-\mu)/b&ifx<\mu. \end{cases}
then the expected shortfall is equal to
\operatorname{ES}\alpha(X)=-\mu+b(1-ln2\alpha)
\alpha\le0.5
If the loss of a portfolio
L
\operatorname{ES}\alpha(L)=\begin{cases} \mu+b
\alpha | |
1-\alpha |
(1-ln2\alpha)&if\alpha<0.5,\\[4pt] \mu+b[1-ln(2(1-\alpha))]&if\alpha\ge0.5. \end{cases}
If the payoff of a portfolio
X
f(x)=
1 | |
s |
| ||||
e |
| ||||
\left(1+e |
\right)-2
F(x)=
| ||||
\left(1+e |
\right)-1
\operatorname{ES}\alpha(X)=-\mu+sln
| ||||||||
\alpha |
If the loss of a portfolio
L
\operatorname{ES}\alpha(L)=\mu+s
-\alphaln\alpha-(1-\alpha)ln(1-\alpha) | |
1-\alpha |
If the loss of a portfolio
L
f(x)=\begin{cases}λe-λ&ifx\geq0,\ 0&ifx<0.\end{cases}
F(x)=\begin{cases}1-e-λ&ifx\geq0,\ 0&ifx<0.\end{cases}
\operatorname{ES}\alpha(L)=
-ln(1-\alpha)+1 | |
λ |
If the loss of a portfolio
L
f(x)=\begin{cases}
| |||||||||
xa+1 |
&ifx\geqxm,\\ 0&ifx<xm. \end{cases}
F(x)=\begin{cases} 1-
a | |
(x | |
m/x) |
&ifx\geqxm,\\ 0&ifx<xm. \end{cases}
\operatorname{ES}\alpha(L)=
xma | |
(1-\alpha)1/a(a-1) |
If the loss of a portfolio
L
f(x)=
1 | |
s |
\left(1+
\xi(x-\mu) | |
s |
| |||||
\right) |
and the c.d.f.
F(x)=\begin{cases} 1-\left(1+
\xi(x-\mu) | |
s |
\right)-1&if\xi\ne0,\\ 1-\exp\left(-
x-\mu | |
s |
\right)&if\xi=0. \end{cases}
then the expected shortfall is equal to
\operatorname{ES}\alpha(L)=\begin{cases} \mu+s\left[
(1-\alpha)-\xi | + | |
1-\xi |
(1-\alpha)-\xi-1 | |
\xi |
\right]&if\xi\ne0,\\ \mu+s\left[1-ln(1-\alpha)\right]&if\xi=0, \end{cases}
and the VaR is equal to
\operatorname{VaR}\alpha(L)=\begin{cases} \mu+s
(1-\alpha)-\xi-1 | |
\xi |
&if\xi\ne0,\\ \mu-sln(1-\alpha)&if\xi=0. \end{cases}
If the loss of a portfolio
L
f(x)=\begin{cases}
k | \left( | |
λ |
x | |
λ |
\right)k-1
-(x/λ)k | |
e |
&ifx\geq0,\\ 0&ifx<0. \end{cases}
F(x)=\begin{cases} 1-
-(x/λ)k | |
e |
&ifx\geq0,\\ 0&ifx<0. \end{cases}
\operatorname{ES}\alpha(L)=
λ | \Gamma\left(1+ | |
1-\alpha |
1 | |
k |
,-ln(1-\alpha)\right)
\Gamma(s,x)
If the payoff of a portfolio
X
f(x)=\begin{cases}
1 | |
\sigma |
\left(1+\xi
x-\mu | |
\sigma |
| |||||
\right) |
\exp\left[-\left(1+\xi
x-\mu | |
\sigma |
\right)-{1/{\xi}}\right]&if\xi\ne0,\\
1 | |
\sigma |
| ||||
e |
| ||||||||
e |
&if\xi=0. \end{cases}
F(x)=\begin{cases} \exp\left(-\left(1+\xi
x-\mu | |
\sigma |
\right)-{1/{\xi}}\right)&if\xi\ne
| ||||
0,\\ \exp\left(-e |
\right)&if\xi=0. \end{cases}
\operatorname{ES}\alpha(X)=\begin{cases} -\mu-
\sigma | |
\alpha\xi |
[\Gamma(1-\xi,-ln\alpha)-\alpha]&if\xi\ne0,\\ -\mu-
\sigma | |
\alpha |
[li(\alpha)-\alphaln(-ln\alpha)]&if\xi=0. \end{cases}
\operatorname{VaR}\alpha(X)=\begin{cases} -\mu-
\sigma | |
\xi |
\left[(-ln\alpha)-\xi-1\right]&if\xi\ne0,\\ -\mu+\sigmaln(-ln\alpha)&if\xi=0. \end{cases}
\Gamma(s,x)
li(x)=\int
dx | |
lnx |
If the loss of a portfolio
L
\operatorname{ES}\alpha(X)=\begin{cases} \mu+
\sigma | |
(1-\alpha)\xi |
l[\gamma(1-\xi,-ln\alpha)-(1-\alpha)r]&if\xi\ne0,\\ \mu+
\sigma | |
1-\alpha |
l[y-li(\alpha)+\alphaln(-ln\alpha)r]&if\xi=0. \end{cases}
\gamma(s,x)
y
If the payoff of a portfolio
X
f(x)=
1 | \operatorname{sech}\left( | |
2\sigma |
\pi | |
2 |
x-\mu | |
\sigma |
\right)
F(x)=
2 | \arctan\left[\exp\left( | |
\pi |
\pi | |
2 |
x-\mu | |
\sigma |
\right)\right]
\operatorname{ES}\alpha(X)= -\mu-
2\sigma | |
\pi |
ln\left(\tan
\pi\alpha | |
2 |
\right) -
2\sigma | |
\pi2\alpha |
i\left[\operatorname{Li} | ||||
|
\right)-\operatorname{Li} | ||||
|
\right)\right]
\operatorname{Li}2
i=\sqrt{-1}
If the payoff of a portfolio
X
F(x)=\Phi\left[\gamma+\delta\sinh-1\left(
x-\xi | |
λ |
\right)\right]
\operatorname{ES}\alpha(X)= -\xi-
λ | |
2\alpha |
\left[ \exp\left(
1-2\gamma\delta | |
2\delta2 |
\right) \Phi\left(\Phi-1(\alpha)-
1 | |
\delta |
\right) -\exp\left(
1+2\gamma\delta | |
2\delta2 |
\right) \Phi\left(\Phi-1(\alpha)+
1 | |
\delta |
\right) \right]
\Phi
If the payoff of a portfolio
X
f(x)=
ck | \left( | |
\beta |
x-\gamma | |
\beta |
\right)c-1\left[1+\left(
x-\gamma | |
\beta |
\right)c\right]-k-1
F(x)=1-\left[1+\left(
x-\gamma | |
\beta |
\right)c\right]-k
\operatorname{ES}\alpha(X)= -\gamma -
\beta | |
\alpha |
\left((1-\alpha)-1/k-1\right)1/c\left[\alpha-1+{2F
,k;1+ | |||||
|
1 | |
c |
;1-(1-\alpha)-1/k\right)\right]
2F1
\operatorname{ES}\alpha(X)= -\gamma -
\beta | |
\alpha |
ck | |
c+1 |
\left((1-\alpha)-1/k-1
| ||||
\right) |
{2F
|
,k+1;2+
1 | |
c |
;1-(1-\alpha)-1/k\right)
If the payoff of a portfolio
X
f(x)=
ck | \left( | |
\beta |
x-\gamma | |
\beta |
\right)ck-1\left[1+\left(
x-\gamma | |
\beta |
\right)c\right]-k-1
F(x)=\left[1+\left(
x-\gamma | |
\beta |
\right)-c\right]-k
\operatorname{ES}\alpha(X)= -\gamma -
\beta | |
\alpha |
ck | |
ck+1 |
\left(\alpha-1/k-1
| ||||
\right) |
{2F
;k+1+ | |||||
|
1 | ;- | |
c |
1 | |
\alpha-1/k-1 |
\right)
2F1
If the payoff of a portfolio
X
ln(1+X)
f(x)=
1 | |
\sqrt{2\pi |
| ||||
\sigma}e |
\operatorname{ES}\alpha(X)=1-\exp\left(\mu+
\sigma2 | |
2 |
\right)
\Phi\left(\Phi-1(\alpha)-\sigma\right) | |
\alpha |
\Phi(x)
\Phi-1(\alpha)
If the payoff of a portfolio
X
ln(1+X)
f(x)=
1 | |
s |
| ||||
e |
| ||||
\left(1+e |
\right)-2
\operatorname{ES}\alpha(X)=1-
e\mu | |
\alpha |
I | ||||
|
I\alpha
I | ||||
|
As the incomplete beta function is defined only for positive arguments, for a more generic case the expected shortfall can be expressed with the hypergeometric function:
\operatorname{ES}\alpha(X)=1-
e\mu\alphas | |
s+1 |
{2F1}(s,s+1;s+2;\alpha)
If the loss of a portfolio
L
f(x)=
| |||||
(1+(x/a)b)2 |
F(x)=
1 | |
1+(x/a)-b |
\operatorname{ES}\alpha(L)=
a | |
1-\alpha |
\left[
\pi | \csc\left( | |
b |
\pi | |
b |
\right) -\Beta\alpha\left(
1 | +1,1- | |
b |
1 | |
b |
\right) \right]
B\alpha
If the payoff of a portfolio
X
ln(1+X)
f(x)=
1 | |
2b |
| ||||
e |
\operatorname{ES}\alpha(X)=\begin{cases} 1-
e\mu(2\alpha)b | |
b+1 |
&if\alpha\le0.5,\\ 1-
e\mu2-b | |
\alpha(b-1) |
\left[(1-\alpha)(1-b)-1\right]&if\alpha>0.5. \end{cases}
If the payoff of a portfolio
X
ln(1+X)
f(x)=
1 | |
2\sigma |
\operatorname{sech}\left(
\pi | |
2 |
x-\mu | |
\sigma |
\right)
\operatorname{ES}\alpha(X)=1-
1 | |
\alpha(\sigma+{\pi/2 |
)}\left(\tan
\pi\alpha | \exp | |
2 |
\pi\mu | |
2\sigma |
\right)2\sigma/\pi\tan
\pi\alpha | |
2 |
{2F
+ | |||||
|
\sigma | ; | |
\pi |
3 | + | |
2 |
\sigma | ;-\tan\left( | |
\pi |
\pi\alpha | |
2 |
\right)2\right),
where
2F1
The conditional version of the expected shortfall at the time t is defined by
t(X) | |
\operatorname{ES} | |
\alpha |
=\operatorname{ess\sup}Q
t} | |
\alpha |
EQ[-X\midl{F}t]
where
t | |
l{Q} | |
\alpha |
=\left\{Q=P\vertl{Ft}:
dQ | |
dP |
\leq
-1 | |
\alpha | |
t |
a.s.\right\}
This is not a time-consistent risk measure. The time-consistent version is given by
t(X) | |
\rho | |
\alpha |
=\operatorname{ess\sup}Q
t | |
\tilde{l{Q}} | |
\alpha |
=\left\{Q\llP:\operatorname{E}\left[
dQ | |
dP |
\midl{F}\tau+1\right]\leq
-1 | ||
\alpha | \operatorname{E}\left[ | |
t |
dQ | |
dP |
\midl{F}\tau\right] \forall\tau\geqta.s.\right\}.
Methods of statistical estimation of VaR and ES can be found in Embrechts et al.[18] and Novak.[19] When forecasting VaR and ES, or optimizing portfolios to minimize tail risk, it is important to account for asymmetric dependence and non-normalities in the distribution of stock returns such as auto-regression, asymmetric volatility, skewness, and kurtosis.[20]