Uniform polyhedron compound explained

In geometry, a uniform polyhedron compound is a polyhedral compound whose constituents are identical (although possibly enantiomorphous) uniform polyhedra, in an arrangement that is also uniform, i.e. the symmetry group of the compound acts transitively on the compound's vertices.

The uniform polyhedron compounds were first enumerated by John Skilling in 1976, with a proof that the enumeration is complete. The following table lists them according to his numbering.

The prismatic compounds of prisms (UC20 and UC21) exist only when, and when and are coprime. The prismatic compounds of antiprisms (UC22, UC23, UC24 and UC25) exist only when, and when and are coprime. Furthermore, when, the antiprisms degenerate into tetrahedra with digonal bases.

CompoundBowers
acronym
PicturePolyhedral
count
Polyhedral typeFacesEdgesVerticesNotesSymmetry groupSubgroup
restricting
to one
constituent
UC01sis50px6tetrahedra243624Rotational freedomTdS4
UC02dis50px12tetrahedra487248Rotational freedomOhS4
UC03snu50px6tetrahedra243624OhD2d
UC04so50px2tetrahedra8128RegularOhTd
UC05ki50px5tetrahedra203020RegularIT
UC06e50px10tetrahedra406020Regular

2 polyhedra per vertex

IhT
UC07risdoh50px6cubes(12+24)7248Rotational freedomOhC4h
UC08rah50px3cubes(6+12)3624OhD4h
UC09rhom50px5cubes306020Regular

2 polyhedra per vertex

IhTh
UC10dissit50px4octahedra(8+24)4824Rotational freedomThS6
UC11daso50px8octahedra(16+48)9648Rotational freedomOhS6
UC12sno50px4octahedra(8+24)4824OhD3d
UC13addasi50px20octahedra(40+120)240120Rotational freedomIhS6
UC14dasi50px20octahedra(40+120)240602 polyhedra per vertexIhS6
UC15gissi50px10octahedra(20+60)12060IhD3d
UC16si50px10octahedra(20+60)12060IhD3d
UC17se50px5octahedra406030RegularIhTh
UC18hirki50px5tetrahemihexahedra20

15

6030IT
UC19sapisseri50px20tetrahemihexahedra(20+60)

60

240602 polyhedra per vertexIC3
UC20-50px2n

(2n ≥ 2)

p/q-gonal prisms4n

2np

6np4npRotational freedomDnphCph
UC21-50pxn

(n ≥ 2)

p/q-gonal prisms2n

np

3np2npDnphDph
UC22-50px2n

(2n ≥ 2)

(q odd)

p/q-gonal antiprisms

(q odd)

4n (if ≠ 2)

4np

8np4npRotational freedomDnpd (if n odd)

Dnph (if n even)

S2p
UC23-50pxn

(n ≥ 2)

p/q-gonal antiprisms

(q odd)

2n (if ≠ 2)

2np

4np2npDnpd (if n odd)

Dnph (if n even)

Dpd
UC24-50px2n

(2n ≥ 2)

p/q-gonal antiprisms

(q even)

4n (if ≠ 2)

4np

8np4npRotational freedomDnphCph
UC25-50pxn

(n ≥ 2)

p/q-gonal antiprisms

(q even)

2n (if ≠ 2)

2np

4np2npDnphDph
UC26gadsid50px12pentagonal antiprisms120

24

240120Rotational freedomIhS10
UC27gassid50px6pentagonal antiprisms60

12

12060IhD5d
UC28gidasid50px12pentagrammic crossed antiprisms120

24

240120Rotational freedomIhS10
UC29gissed50px6pentagrammic crossed antiprisms60

12

12060IhD5d
UC30ro50px4triangular prisms8

12

3624OD3
UC31dro50px8triangular prisms16

24

7248OhD3
UC32kri50px10triangular prisms20

30

9060ID3
UC33dri50px20triangular prisms40

60

180602 polyhedra per vertexIhD3
UC34kred50px6pentagonal prisms30

12

9060ID5
UC35dird50px12pentagonal prisms60

24

180602 polyhedra per vertexIhD5
UC36gikrid50px6pentagrammic prisms30

12

9060ID5
UC37giddird50px12pentagrammic prisms60

24

180602 polyhedra per vertexIhD5
UC38griso50px4hexagonal prisms24

8

7248OhD3d
UC39rosi50px10hexagonal prisms60

20

180120IhD3d
UC40rassid50px6decagonal prisms60

12

180120IhD5d
UC41grassid50px6decagrammic prisms60

12

180120IhD5d
UC42gassic50px3square antiprisms24

6

4824OD4
UC43gidsac50px6square antiprisms48

12

9648OhD4
UC44sassid50px6pentagrammic antiprisms60

12

12060ID5
UC45sadsid50px12pentagrammic antiprisms120

24

240120IhD5
UC46siddo50px2icosahedra(16+24)6024OhTh
UC47sne50px5icosahedra(40+60)15060IhTh
UC48presipsido50px2great dodecahedra246024OhTh
UC49presipsi50px5great dodecahedra6015060IhTh
UC50passipsido50px2small stellated dodecahedra246024OhTh
UC51passipsi50px5small stellated dodecahedra6015060IhTh
UC52sirsido50px2great icosahedra(16+24)6024OhTh
UC53sirsei50px5great icosahedra(40+60)15060IhTh
UC54tisso50px2truncated tetrahedra8

8

3624OhTd
UC55taki50px5truncated tetrahedra20

20

9060IT
UC56te50px10truncated tetrahedra40

40

180120IhT
UC57tar50px5truncated cubes40

30

180120IhTh
UC58quitar50px5stellated truncated hexahedra40

30

180120IhTh
UC59arie50px5cuboctahedra40

30

12060IhTh
UC60gari50px5cubohemioctahedra30

20

12060IhTh
UC61iddei50px5octahemioctahedra40

20

12060IhTh
UC62rasseri50px5rhombicuboctahedra40

(30+60)

240120IhTh
UC63rasher50px5small rhombihexahedra60

30

240120IhTh
UC64rahrie50px5small cubicuboctahedra40

30

30

240120IhTh
UC65raquahri50px5great cubicuboctahedra40

30

30

240120IhTh
UC66rasquahr50px5great rhombihexahedra60

30

240120IhTh
UC67rosaqri50px5nonconvex great rhombicuboctahedra40

(30+60)

240120IhTh
UC68disco50px2snub cubes(16+48)

12

12048OhO
UC69dissid50px2snub dodecahedra(40+120)

24

300120IhI
UC70giddasid50px2great snub icosidodecahedra(40+120)

24

300120IhI
UC71gidsid50px2great inverted snub icosidodecahedra(40+120)

24

300120IhI
UC72gidrissid50px2great retrosnub icosidodecahedra(40+120)

24

300120IhI
UC73disdid50px2snub dodecadodecahedra120

24

24

300120IhI
UC74idisdid50px2inverted snub dodecadodecahedra120

24

24

300120IhI
UC75desided50px2snub icosidodecadodecahedra(40+120)

24

24

360120IhI

References

External links