bgcolor=#e7dcc3 colspan=2 | Compound of twenty octahedra with rotational freedom | |
---|---|---|
align=center colspan=2 | ||
Type | Uniform compound | |
Index | UC13 | |
Polyhedra | 20 octahedra | |
Faces | 40+120 triangles | |
Edges | 240 | |
Vertices | 120 | |
Symmetry group | icosahedral (Ih) | |
Subgroup restricting to one constituent | 6-fold improper rotation (S6) |
When θ is zero or 60 degrees, the octahedra coincide in pairs yielding (two superimposed copies of) the compounds of ten octahedra UC16 and UC15 respectively. When
\theta=2\tan-1\left(\sqrt{
1 | |
3 |
\left(13-4\sqrt{10}\right)}\right) ≈ 37.76124\circ,
octahedra (from distinct rotational axes) coincide in sets four, yielding the compound of five octahedra. When
\theta=2\tan-1\left(
-4\sqrt{3 | |
-2\sqrt{15}+\sqrt{132+60\sqrt{5}}}{4+\sqrt{2}+2\sqrt{5}+\sqrt{10}}\right) ≈ 14.33033 |
\circ,
the vertices coincide in pairs, yielding the compound of twenty octahedra (without rotational freedom).
Cartesian coordinates for the vertices of this compound are all the cyclic permutations of
\begin{align} &\scriptstyle(\pm2\sqrt3\sin\theta,\pm(\tau-1\sqrt2+2\tau\cos\theta),\pm(\tau\sqrt2-2\tau-1\cos\theta))\\ &\scriptstyle(\pm(\sqrt2-\tau2\cos\theta+\tau-1\sqrt3\sin\theta),\pm(\sqrt2+(2\tau-1)\cos\theta+\sqrt3\sin\theta),\pm(\sqrt2+\tau-2\cos\theta-\tau\sqrt3\sin\theta))\\ &\scriptstyle(\pm(\tau-1\sqrt2-\tau\cos\theta-\tau\sqrt3\sin\theta),\pm(\tau\sqrt2+\tau-1\cos\theta+\tau-1\sqrt3\sin\theta),\pm(3\cos\theta-\sqrt3\sin\theta))\\ &\scriptstyle(\pm(-\tau-1\sqrt2+\tau\cos\theta-\tau\sqrt3\sin\theta),\pm(\tau\sqrt2+\tau-1\cos\theta-\tau-1\sqrt3\sin\theta),\pm(3\cos\theta+\sqrt3\sin\theta))\\ &\scriptstyle(\pm(-\sqrt2+\tau2\cos\theta+\tau-1\sqrt3\sin\theta),\pm(\sqrt2+(2\tau-1)\cos\theta-\sqrt3\sin\theta),\pm(\sqrt2+\tau-2\cos\theta+\tau\sqrt3\sin\theta)) \end{align}
where τ = (1 + )/2 is the golden ratio (sometimes written φ).