Compound of eight octahedra with rotational freedom explained

bgcolor=#e7dcc3 colspan=2Compound of eight octahedra with rotational freedom
align=center colspan=2
TypeUniform compound
IndexUC11
Polyhedra8 octahedra
Faces16+48 triangles
Edges96
Vertices48
Symmetry groupoctahedral (Oh)
Subgroup restricting to one constituent6-fold improper rotation (S6)
The compound of eight octahedra with rotational freedom is a uniform polyhedron compound. It is composed of a symmetric arrangement of 8 octahedra, considered as triangular antiprisms. It can be constructed by superimposing eight identical octahedra, and then rotating them in pairs about the four axes that pass through the centres of two opposite octahedral faces. Each octahedron is rotated by an equal (and opposite, within a pair) angle θ.

It can be constructed by superimposing two compounds of four octahedra with rotational freedom, one with a rotation of θ, and the other with a rotation of -θ.

When θ = 0, all eight octahedra coincide. When θ is 60 degrees, the octahedra coincide in pairs yielding (two superimposed copies of) the compound of four octahedra.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the permutations of

(\pm(1-\cos(\theta)+\sqrt{3}\sin(\theta)),\pm(1-\cos(\theta)-\sqrt{3}\sin(\theta)),\pm(1+2\cos(\theta))).

References