In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.
Some concepts of real random variables have a straightforward generalization to complex random variables—e.g., the definition of the mean of a complex random variable. Other concepts are unique to complex random variables.
Applications of complex random variables are found in digital signal processing,[1] quadrature amplitude modulation and information theory.
A complex random variable
Z
(\Omega,l{F},P)
Z\colon\Omega → C
\Re{(Z)}
\Im{(Z)}
(\Omega,l{F},P)
Consider a random variable that may take only the three complex values
1+i,1-i,2
Probability P(z) | Value z | ||||
---|---|---|---|---|---|
| 1+i | ||||
| 1-i | ||||
| 2 |
The expectation of this random variable may be simply calculated:
\operatorname{E}[Z]=
1 | |
4 |
(1+i)+
1 | |
4 |
(1-i)+
1 | |
2 |
2=
3 | |
2 |
.
Another example of a complex random variable is the uniform distribution over the filled unit circle, i.e. the set
\{z\inC\mid|z|\le1\}
See main article: Complex normal distribution.
Complex Gaussian random variables are often encountered in applications. They are a straightforward generalization of real Gaussian random variables. The following plot shows an example of the distribution of such a variable.
The generalization of the cumulative distribution function from real to complex random variables is not obvious because expressions of the form
P(Z\leq1+3i)
P(\Re{(Z)}\leq1,\Im{(Z)}\leq3)
FZ:C\to[0,1]
The probability density function of a complex random variable is defined as
fZ(z)=f\Re{(Z),\Im{(Z)}}(\Re{(z)},\Im{(z)})
z\inC
(\Re{(z)},\Im{(z)})
An equivalent definition is given by
f | ||||
|
P(\Re{(Z)}\leqx,\Im{(Z)}\leqy)
x=\Re{(z)}
y=\Im{(z)}
As in the real case the density function may not exist.
The expectation of a complex random variable is defined based on the definition of the expectation of a real random variable:[2]
Note that the expectation of a complex random variable does not exist if
\operatorname{E}[\Re{(Z)}]
\operatorname{E}[\Im{(Z)}]
If the complex random variable
Z
fZ(z)
\operatorname{E}[Z]=\iintCz ⋅ fZ(z)dxdy
If the complex random variable
Z
pZ(z)
\operatorname{E}[Z]=\sumzz ⋅ pZ(z)
\overline{\operatorname{E}[Z]}=\operatorname{E}[\overlineZ].
The expected value operator
\operatorname{E}[ ⋅ ]
\operatorname{E}[aZ+bW]=a\operatorname{E}[Z]+b\operatorname{E}[W]
for any complex coefficients
a,b
Z
W
The variance is defined in terms of absolute squares as:[2]
\operatorname{Var}[Z]=\operatorname{Var}[\Re{(Z)}]+\operatorname{Var}[\Im{(Z)}].
The variance of a linear combination of complex random variables may be calculated using the following formula:
N | |
\operatorname{Var}\left[\sum | |
k=1 |
akZk\right]=
N | |
\sum | |
i=1 |
N | |
\sum | |
j=1 |
ai\overline{aj
The pseudo-variance is a special case of the pseudo-covariance and is defined in terms of ordinary complex squares, given by:
Unlike the variance of
Z
Z
For a general complex random variable, the pair
(\Re{(Z)},\Im{(Z)})
\begin{bmatrix}\operatorname{Var}[\Re{(Z)}]&\operatorname{Cov}[\Im{(Z)},\Re{(Z)}]\ \operatorname{Cov}[\Re{(Z)},\Im{(Z)}]&\operatorname{Var}[\Im{(Z)}]\end{bmatrix}
\operatorname{Cov}[\Re{(Z)},\Im{(Z)}]=\operatorname{Cov}[\Im{(Z)},\Re{(Z)}]
Its elements equal:
\begin{align} &\operatorname{Var}[\Re{(Z)}]=\tfrac{1}{2}\operatorname{Re}(\operatorname{K}ZZ+\operatorname{J}ZZ)\\ &\operatorname{Var}[\Im{(Z)}]=\tfrac{1}{2}\operatorname{Re}(\operatorname{K}ZZ-\operatorname{J}ZZ)\\ &\operatorname{Cov}[\Re{(Z)},\Im{(Z)}]=\tfrac{1}{2}\operatorname{Im}(\operatorname{J}ZZ)\\ \end{align}
\begin{align} &\operatorname{K}ZZ=\operatorname{Var}[\Re{(Z)}]+\operatorname{Var}[\Im{(Z)}]\\ &\operatorname{J}ZZ=\operatorname{Var}[\Re{(Z)}]-\operatorname{Var}[\Im{(Z)}]+i2\operatorname{Cov}[\Re{(Z)},\Im{(Z)}] \end{align}
The covariance between two complex random variables
Z,W
Notice the complex conjugation of the second factor in the definition.
In contrast to real random variables, we also define a pseudo-covariance (also called complementary variance):
The second order statistics are fully characterized by the covariance and the pseudo-covariance.
\operatorname{Cov}[Z,W]=\overline{\operatorname{Cov}[W,Z]}
\operatorname{Cov}[\alphaZ,W]=\alpha\operatorname{Cov}[Z,W]
\operatorname{Cov}[Z,\alphaW]=\overline{\alpha}\operatorname{Cov}[Z,W]
\operatorname{Cov}[Z1+Z2,W]=\operatorname{Cov}[Z1,W]+\operatorname{Cov}[Z2,W]
\operatorname{Cov}[Z,W1+W2]=\operatorname{Cov}[Z,W1]+\operatorname{Cov}[Z,W2]
\operatorname{Cov}[Z,Z]={\operatorname{Var}[Z]}
Z
W
\operatorname{K}ZW=\operatorname{J}ZW=0
Z
W
\operatorname{E}[Z\overline{W}]=0
Circular symmetry of complex random variables is a common assumption used in the field of wireless communication. A typical example of a circular symmetric complex random variable is the complex Gaussian random variable with zero mean and zero pseudo-covariance matrix.
A complex random variable
Z
\phi\in[-\pi,\pi]
ei\phiZ
Z
\phi
Thus the expectation of a circularly symmetric complex random variable can only be either zero or undefined.
Additionally, for any
\phi
Thus the pseudo-variance of a circularly symmetric complex random variable can only be zero.
If
Z
ei\phiZ
Z
[-\pi,\pi]
Z
The concept of proper random variables is unique to complex random variables, and has no correspondent concept with real random variables.
A complex random variable
Z
\operatorname{E}[Z]=0
\operatorname{Var}[Z]<infty
\operatorname{E}[Z2]=0
\operatorname{E}[Z]=0
\operatorname{E}[\Re{(Z)}2]=\operatorname{E}[\Im{(Z)}2] ≠ infty
\operatorname{E}[\Re{(Z)}\Im{(Z)}]=0
For a proper complex random variable, the covariance matrix of the pair
(\Re{(Z)},\Im{(Z)})
\begin{bmatrix}
1 | |
2 |
\operatorname{Var}[Z]&0\ 0&
1 | |
2 |
\operatorname{Var}[Z]\end{bmatrix}
\begin{align} &\operatorname{Var}[\Re{(Z)}]=\operatorname{Var}[\Im{(Z)}]=\tfrac{1}{2}\operatorname{Var}[Z]\\ &\operatorname{Cov}[\Re{(Z)},\Im{(Z)}]=0\\ \end{align}
The Cauchy-Schwarz inequality for complex random variables, which can be derived using the Triangle inequality and Hölder's inequality, is
\left|\operatorname{E}\left[Z\overline{W}\right]\right|2\leq\left|\operatorname{E}\left[\left|Z\overline{W}\right|\right]\right|2\leq\operatorname{E}\left[|Z|2\right]\operatorname{E}\left[|W|2\right]
The characteristic function of a complex random variable is a function
C\toC
\varphiZ(\omega)=\operatorname{E}\left[ei\Re{(\overline{\omegaZ)}}\right]=\operatorname{E}\left[ei(\Re{(Z)}+\Im{(\omega)}\Im{(Z)})}\right].