In mathematics, a closed manifold is a manifold without boundary that is compact.In comparison, an open manifold is a manifold without boundary that has only non-compact components.
The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold.[1] A line is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary.
Every closed manifold is a Euclidean neighborhood retract and thus has finitely generated homology groups.[2]
If
M
Hn(M;Z)
Z
M
Hn-1(M;Z)
Z2
M
Let
R
R
M
[M]\inHn(M;R)
D:Hk(M;R)\toHn-k(M;R)
D(\alpha)=[M]\cap\alpha
Z2
k(M;Z | |
H | |
2) |
\congHn-k(M;Z2)
For a connected manifold, "open" is equivalent to "without boundary and non-compact", but for a disconnected manifold, open is stronger. For instance, the disjoint union of a circle and a line is non-compact since a line is non-compact, but this is not an open manifold since the circle (one of its components) is compact.
Most books generally define a manifold as a space that is, locally, homeomorphic to Euclidean space (along with some other technical conditions), thus by this definition a manifold does not include its boundary when it is embedded in a larger space. However, this definition doesn’t cover some basic objects such as a closed disk, so authors sometimes define a manifold with boundary and abusively say manifold without reference to the boundary. But normally, a compact manifold (compact with respect to its underlying topology) can synonymously be used for closed manifold if the usual definition for manifold is used.
The notion of a closed manifold is unrelated to that of a closed set. A line is a closed subset of the plane, and a manifold, but not a closed manifold.
The notion of a "closed universe" can refer to the universe being a closed manifold but more likely refers to the universe being a manifold of constant positive Ricci curvature.