The Cole-Davidson equation is a model used to describe dielectric relaxation in glass-forming liquids.[1] The equation for the complex permittivity is
\hat{\varepsilon}(\omega)=\varepsiloninfty+
\Delta\varepsilon | |
(1+i\omega\tau)\beta |
,
where
\varepsiloninfty
\Delta\varepsilon=\varepsilons-\varepsiloninfty
\varepsilons
\tau
\beta
\varepsilon''(\omega)\sim\omega-\beta
The Cole–Davidson equation is a generalization of the Debye relaxation keeping the initial increase of the low frequency wing of the imaginary part,
\varepsilon''(\omega)\sim\omega
Because the slopes of the peak in
\varepsilon''(\omega)
The Cole–Davidson equation is the special case of the Havriliak-Negami relaxation with
\alpha=1
The real and imaginary parts are
\varepsilon'(\omega)=\varepsiloninfty+\Delta\varepsilon\left(1+(\omega\tau)2\right)-\beta/2\cos(\beta\arctan(\omega\tau))
and
\varepsilon''(\omega)=\Delta\varepsilon\left(1+(\omega\tau)2\right)-\beta/2\sin(\beta\arctan(\omega\tau))