In differential geometry, Cohn-Vossen's inequality, named after Stefan Cohn-Vossen, relates the integral of Gaussian curvature of a non-compact surface to the Euler characteristic. It is akin to the Gauss–Bonnet theorem for a compact surface.
A divergent path within a Riemannian manifold is a smooth curve in the manifold that is not contained within any compact subset of the manifold. A complete manifold is one in which every divergent path has infinite length with respect to the Riemannian metric on the manifold. Cohn-Vossen's inequality states that in every complete Riemannian 2-manifold S with finite total curvature and finite Euler characteristic, we have[1]
\iintSKdA\le2\pi\chi(S),
where K is the Gaussian curvature, dA is the element of area, and χ is the Euler characteristic.
\iintSKdA=2\pi\chi(S)-\int\partialkgds
where
kg