Coherent algebra explained

I

and the all-ones matrix

J

.[1]

Definitions

A subspace

l{A}

of

Matn(C)

is said to be a coherent algebra of order

n

if:

I,J\inl{A}

.

MT\inl{A}

for all

M\inl{A}

.

MN\inl{A}

and

M\circN\inl{A}

for all

M,N\inl{A}

.A coherent algebra

l{A}

is said to be:

l{A}

has a constant diagonal.

l{A}

is commutative with respect to ordinary matrix multiplication.

l{A}

is symmetric.The set

\Gamma(l{A})

of Schur-primitive matrices in a coherent algebra

l{A}

is defined as

\Gamma(l{A}):=\{M\inl{A}:M\circM=M,M\circN\in\operatorname{span}\{M\}forallN\inl{A}\}

.

Dually, the set

Λ(l{A})

of primitive matrices in a coherent algebra

l{A}

is defined as

Λ(l{A}):=\{M\inl{A}:M2=M,MN\in\operatorname{span}\{M\}forallN\inl{A}\}

.

Examples

l{W}

is a coherent algebra of order

n

if

l{W}:=\{M\inMatn(C):MP=PMforallP\inS\}

for a group

S

of

n x n

permutation matrices. Additionally, the centralizer of the group of permutation matrices representing the automorphism group of a graph

G

is homogeneous if and only if

G

is vertex-transitive.[2]

l{W}:=\operatorname{span}\{A(u,v):u,v\inV\}

where

A(u,v)\in\operatorname{Mat}V(C)

is defined as

(A(u,v))x,:=\begin{cases}1if(x,y)=(ug,vg)forsomeg\inG\ 0otherwise\end{cases}

for all

u,v\inV

of a finite set

V

acted on by a finite group

G

.

C

is a coherent algebra.

Properties

n

is a coherent algebra.

l{A}l{B}:=\{MN:M\inl{A}andN\inl{B}\}

if

l{A}\in\operatorname{Mat}m(C)

and

l{B}\inMatn(C)

are coherent algebras.

\widehat{l{A}}:=\operatorname{span}\{M+MT:M\inl{A}\}

of a commutative coherent algebra

l{A}

is a coherent algebra.

l{A}

is a coherent algebra, then

MT\in\Gamma(l{A})

for all

M\inl{A}

,

l{A}=\operatorname{span}\left(\Gamma(l{A}\right))

, and

I\in\Gamma(l{A})

if

l{A}

is homogeneous.

l{A}

is a commutative coherent algebra (of order

n

), then

ET,E*\inΛ(l{A})

for all

E\inl{A}

,
1
n

J\inΛ(l{A})

, and

l{A}=\operatorname{span}\left(Λ(l{A}\right))

as well.

See also

References

  1. Web site: Association Schemes. Godsil. Chris. 2010.
  2. Godsil. Chris. 2011-01-26. Periodic Graphs. The Electronic Journal of Combinatorics. 18. 1. P23. 1077-8926. 0806.2074.