A closed chain inference is a mathematical proof technique with which the pairwise equivalence of several statements can be proven without having to prove all pairwise equivalences directly.
In order to prove that the statements
\varphi1,\ldots,\varphin
\varphi1 ⇒ \varphi2
\varphi2 ⇒ \varphi3
...
\varphin-1 ⇒ \varphin
\varphin ⇒ \varphi1
The pairwise equivalence of the statements then results from the transitivity of the material conditional.
For
n=4
\varphi1 ⇒ \varphi2
\varphi2 ⇒ \varphi3
\varphi3 ⇒ \varphi4
\varphi4 ⇒ \varphi1
\varphi2
\varphi4
\varphi2 ⇒ \varphi3 | ||
\varphi3 ⇒ \varphi4 | ||
This leads to: | ||
It follows | \varphi2 ⇒ \varphi4 | |
And | ||
\varphi4 ⇒ \varphi1 | ||
\varphi1 ⇒ \varphi2 | ||
This leads to: | ||
It follows | \varphi4 ⇒ \varphi2 |
\varphi2\Leftrightarrow\varphi4
The technique saves writing effort above all. By dispensing with the formally necessary chain of conclusions, only
n
\varphii ⇒ \varphij
n(n-1)