In mathematics, the classifying space
\operatorname{BSU}(n)
\operatorname{SU}(n)
\operatorname{SU}(n)
\operatorname{ESU}(n) → \operatorname{BSU}(n)
\operatorname{SU}(n)
\operatorname{BSU}(n)
There is a canonical inclusion of complex oriented Grassmannians given by
k+1 | |
\widetilde\operatorname{Gr} | |
n(C |
), V\mapstoV x \{0\}
infty) :=\lim | |
\operatorname{BSU}(n) :=\widetilde\operatorname{Gr} | |
n → infty |
k). | |
\widetilde\operatorname{Gr} | |
n(C |
Since real oriented Grassmannians can be expressed as a homogeneous space by:
k) =\operatorname{SU}(n+k)/(\operatorname{SU}(n) x \operatorname{SU}(k)) | |
\widetilde\operatorname{Gr} | |
n(C |
the group structure carries over to
\operatorname{BSU}(n)
\operatorname{SU}(1) \cong1
\operatorname{BSU}(1) \cong\{*\}
\operatorname{SU}(2) \cong\operatorname{Sp}(1)
\operatorname{BSU}(2) \cong\operatorname{BSp}(1) \congHPinfty
X
\operatorname{SU}(n)
\operatorname{Prin}\operatorname{SU(n)}(X)
X
[X,\operatorname{BSU}(n)] → \operatorname{Prin}\operatorname{SU(n)}(X), [f]\mapstof*\operatorname{ESU}(n)
is bijective.
The cohomology ring of
\operatorname{BSU}(n)
Z
*(\operatorname{BSU}(n);Z) =Z[c | |
H | |
2,\ldots,c |
n].
The canonical inclusions
\operatorname{SU}(n)\hookrightarrow\operatorname{SU}(n+1)
\operatorname{BSU}(n)\hookrightarrow\operatorname{BSU}(n+1)
\operatorname{SU} :=\limn → infty\operatorname{SU}(n);
\operatorname{BSU} :=\limn → infty\operatorname{BSU}(n).
\operatorname{BSU}
\operatorname{SU}