Class II bacteriocin explained

Class II bacteriocins are a class of small peptides that inhibit the growth of various bacteria.

Many Gram-positive bacteria produce ribosomally synthesized antimicrobial peptides, termed bacteriocins.

Bacteriocins for which disulfide bonds are the only modification to the peptide are Class II bacteriocins.

Class IIa

One important and well studied class of bacteriocins is the class IIa or pediocin-like bacteriocins produced by lactic acid bacteria. All class IIa bacteriocins are produced by food-associated strains, isolated from a variety of food products of industrial andnatural origins, including meat products, dairy products and vegetables. Class IIa bacteriocins are all cationic, display anti-Listeria activity, and kill target cells by permeabilizing the cell membrane.[1] [2] [3]

Class IIa bacteriocins contain between 37 and 48 residues.[4] Based on their primary structures, the peptide chains of class IIa bacteriocins may be divided roughly into two regions: a hydrophilic, cationic and highly conserved N-terminal region, and a less conserved hydrophobic/amphiphilic C-terminal region. The N-terminal region contains the conserved Y-G-N-G-V/L 'pediocin box' motif and two conserved cysteine residues joined by a disulfide bridge. It forms a three-stranded antiparallel beta-sheet supported by the conserved disulfide bridge. This cationic N-terminal beta-sheet domain mediates binding of the class IIa bacteriocin to the target cell membrane. The C-terminal region forms a hairpin-like domain that penetrates into the hydrophobic part of the target cell membrane, thereby mediating leakage through the membrane. The two domains are joined by a hinge, which enables movement of the domains relative to each other.

Some proteins known to belong to the class IIa bacteriocin family are listed below:

Class IIb

Symbol:Antimicrobial17
Class IIb bacteriocin
Pfam:PF08129
Pfam Clan:CL0400
Interpro:IPR012950
Tcdb:1.C.25
Opm Family:219
Opm Protein:2jpj

The class IIb bacteriocins (two-peptide bacteriocins) require two different peptides for activity. It includes the alpha enterocins and lactococcin G peptides. These peptides have some antimicrobial properties; they inhibit the growth of Enterococcus spp. and a few other Gram-positive bacteria. These peptides act as pore-forming toxins that create cell membrane channels through a barrel-stave mechanism and thus produce an ionic imbalance in the cell[7]

Class IIc

Symbol:Bacteriocin_IIc
Bacteriocin_IIc
Pfam:PF09221
Interpro:IPR009086
Scop:1o82
Tcdb:1.C.28
Opm Family:77
Opm Protein:1o82

Other class II bacteriocins can be grouped together as Class IIc (circular bacteriocins). These have a wide range of effects on membrane permeability, cell wall formation and pheromone actions of target cells. In particular, Bacteriocin AS-48 is a cyclic peptide antibiotic produced by the eubacteria Enterococcus faecalis (Streptococcus faecalis) that shows a broad antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. Bacteriocin AS-48 is encoded by the pheromone-responsive plasmid pMB2, and acts on the plasma membrane in which it opens pores leading to ion leakage and cell death.[8] The globular structure of bacteriocin AS-48 consists of five alpha helices enclosing a hydrophobic core. The mammalian NK-lysin effector protein of T and natural killer cells has a similar structure, though it lacks sequence homology with bacteriocins AS-48.

Further reading

  1. Papathanasopoulos . M. A. . Dykes . G. A. . Revol-Junelles . A. M. . Delfour . A. . Von Holy . A. . Hastings . J. W. . Sequence and structural relationships of leucocins A-, B- and C-TA33a from Leuconostoc mesenteroides TA33a . Microbiology . 144 . 1343–1348 . 1998 . 9611809 . 5 . 10.1099/00221287-144-5-1343. free .
  2. Fregeau Gallagher . N. L. . Sailer . M. . Niemczura . W. P. . Nakashima . T. T. . Stiles . M. E. . Vederas . J. C. . 10.1021/bi971263h . Three-Dimensional Structure of Leucocin a in Trifluoroethanol and Dodecylphosphocholine Micelles: Spatial Location of Residues Critical for Biological Activity in Type IIa Bacteriocins from Lactic Acid Bacteria†,‡ . Biochemistry . 36 . 49 . 15062–15072 . 1997 . 9398233 .

External links

Class II bacteriocin and related families is variously recorded in Pfam and InterPro as:

Pfam Pfam symbol InterPro InterPro symbol
Antimicrobial17 Alpha_enterocin/lactococcin
Bacteriocin_II Bacteriocin_IIa
Bacteriocin_IIc Bacteriocin_IIb_lactacin-rel
BacteriocIIc_cy Bacteriocin_IIc
Lactococcin Bacteriocin_IId
L_biotic_typeA Lantibiotic_typ-A_Lactobact

The naming is inconsistent at times.

Notes and References

  1. Ennahar S, Sonomoto K, Ishizaki A . Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation . J. Biosci. Bioeng. . 87 . 6 . 705–16. 1999 . 16232543 . 10.1016/S1389-1723(99)80142-X.
  2. Fimland G, Nissen-Meyer J, Johnsen L . The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum . J. Biol. Chem. . 280 . 10 . 9243–50. 2005 . 15611086 . 10.1074/jbc.M412712200. free .
  3. Dalhus B, Fimland G, Nissen-Meyer J, Johnsen L . Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action . J. Pept. Sci. . 11 . 11 . 688–96. 2005 . 16059970 . 10.1002/psc.699. 38561151 . free .
  4. Simon L, Fremaux C, Cenatiempo Y, Berjeaud JM . Sakacin g, a new type of antilisterial bacteriocin . . 68 . 12 . 6416–20 . 2002 . 12450870 . 10.1128/AEM.68.12.6416-6420.2002 . 134399. 2002ApEnM..68.6416S .
  5. Zhu . Liyan . Zeng . Jianwei . Wang . Chang . Wang . Jiawei . 2022-02-08 . Structural Basis of Pore Formation in the Mannose Phosphotransferase System by Pediocin PA-1 . Applied and Environmental Microbiology . 88 . 3 . e0199221 . 10.1128/AEM.01992-21 . 1098-5336 . 8824269 . 34851716. 2022ApEnM..88E1992Z .
  6. Zhu . Liyan . Zeng . Jianwei . Wang . Jiawei . 2022-06-15 . Structural Basis of the Immunity Mechanisms of Pediocin-like Bacteriocins . Applied and Environmental Microbiology . 88 . 13 . e0048122 . 10.1128/aem.00481-22 . 1098-5336 . 35703550. 9275228 . 2022ApEnM..88E.481Z .
  7. Balla E, Dicks LM, Du Toit M, Van Der Merwe MJ, Holzapfel WH . Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071 . Appl. Environ. Microbiol. . 66 . 4 . 1298–304 . April 2000 . 10742203 . 91984 . 10.1128/aem.66.4.1298-1304.2000. 2000ApEnM..66.1298B .
  8. González C, Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M . Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin . Proc. Natl. Acad. Sci. U.S.A. . 97 . 21 . 11221–6 . October 2000 . 11005847 . 17181 . 10.1073/pnas.210301097 . 2000PNAS...9711221G . free .