Circumcevian triangle explained

In Euclidean geometry, a circumcevian triangle is a special triangle associated with a reference triangle and a point in the plane of the triangle. It is also associated with the circumcircle of the reference triangle.

Definition

Let be a point in the plane of the reference triangle . Let the lines intersect the circumcircle of at . The triangle is called the circumcevian triangle of with reference to .[1]

Coordinates

Let be the side lengths of triangle and let the trilinear coordinates of be . Then the trilinear coordinates of the vertices of the circumcevian triangle of are as follows:[2] \begin A' =& -a\beta\gamma &:& (b\gamma+c\beta)\beta &:& (b\gamma+c\beta)\gamma \\ B' =& (c\alpha +a\gamma)\alpha &:& - b\gamma\alpha &:& (c\alpha +a\gamma) \gamma \\ C' =& (a\beta +b\alpha)\alpha &:& (a\beta +b\alpha)\beta &:& - c\alpha\beta\end

Some properties

See also

Notes and References

  1. Kimberling, C . Triangle Centers and Central Triangles . Congress Numerantium . 1998 . 129 . 201.
  2. Web site: Weisstein, Eric W. . "Circumcevian Triangle" . From MathWorld--A Wolfram Web Resource. . MathWorld . 24 December 2021.
  3. Web site: Bernard Gilbert . K003 McCay Cubic . Catalogue of Triangle Cubics . Bernard Gilbert . 24 December 2021.