In geometry, a circular section is a circle on a quadric surface (such as an ellipsoid or hyperboloid). It is a special plane section of the quadric, as this circle is the intersection with the quadric of the plane containing the circle.
Any plane section of a sphere is a circular section, if it contains at least 2 points. Any quadric of revolution contains circles as sections with planes that are orthogonal to its axis; it does not contain any other circles, if it is not a sphere. More hidden are circles on other quadrics, such as tri-axial ellipsoids, elliptic cylinders, etc. Nevertheless, it is true that:
Equivalently, all quadric surfaces contain circles except parabolic and hyperbolic cylinders and hyperbolic paraboloids.
If a quadric contains a circle, then every intersection of the quadric with a plane parallel to this circle is also a circle, provided it contains at least two points. Except for spheres, the circles contained in a quadric, if any, are all parallel to one of two fixed planes (which are equal in the case of a quadric of revolution).
Circular sections are used in crystallography.[1] [2] [3]
The circular sections of a quadric may be computed from the implicit equation of the quadric, as it is done in the following sections. They may also be characterised and studied by using synthetic projective geometry.
Let be the intersection of a quadric surface and a plane . In this section, and are surfaces in the three-dimensional Euclidean space, which are extended to the projective space over the complex numbers. Under these hypotheses, the curve is a circle if and only if its intersection with the plane at infinity is included in the ombilic (the curve at infinity of equation
x2+y2+z2=0
The first case to be considered is when the intersection of with the plane at infinity consists of one or two real lines, that is when is either a hyperbolic paraboloid, a parabolic cylinder or a hyperbolic cylinder. In this case the points at infinity of are real (intersection of a real plane with real lines). Thus the plane sections of cannot be circles (neither ellipses).
If is a sphere, its intersection with the plane at infinity is the ombilic, and all plane sections are circles.
If is a surface of revolution, its intersection with the ombilic consists of a pair of complex conjugate points (which are double points). A real plane contains these two points if and only if it is perpendicular to the axis of revolution. Thus the circular sections are the plane sections by a plane perpendicular to the axis, that have at least two real points.
In the other cases, the intersection of with the ombilic consists of two different pairs of complex conjugate points. As is a curve of degree two, its intersection with the plane at infinity consists of two points, possibly equal. The curve is thus a circle, if these two points are one of these two pairs of complex conjugate points on the ombilic. Each of these pairs defines a real line (passing through the points), which is the intersection of with the plane at infinity. Thus, one has a circular section if and only has at least two real points and contains one of these lines at infinity (that is if is parallel to one of two directions defined by these lines at infinity).
In order to find the planes, which contain circular sections of a given quadric, one uses the following statements:
(S:) If the common points of a quadric with a sphere are contained in a pair of planes, then the intersection curve consists of two circles.
(P:) If the intersection of a plane and a quadric is a circle, then any parallel plane, that contains at least two points of the quadric, intersects the quadric in a circle, too.
Hence the strategy for the detection of circular sections is:
1) Find a sphere that intersects the quadric in a pair of planes and
2) The planes that are parallel to the detected ones deliver the remaining circular sections.
For the ellipsoid with equation
x2 | + | |
a2 |
y2 | + | |
b2 |
z2 | |
c2 |
=1
a>b>c>0
x2+y2+z2=r2 .
r2
\left( | r2 |
a2 |
| ||||
-1\right) x |
| ||||
-1\right) y |
-1\right) z2=0 .
r=a
r=c
r=b
\left( | b2 |
a2 |
| ||||
-1\right) x |
-1\right) z2=0 \leftrightarrow z=\pm\tfrac{c}{a}\sqrt{\tfrac{a2-b2}{b2-c2}} x ,
a>b>c
The diagram gives an impression of more common intersections between a sphere and an ellipsoid and highlights the exceptional circular case (blue).
If the values of the semi-axes are approaching, the two pencils of planes (and circles) approach either. For
a=b
For the hyperboloid of one sheet with equation
x2 | + | |
a2 |
y2 | - | |
b2 |
z2 | |
c2 |
=1 , a>b ,c>0
x2+y2+z2=r2
\left( | r2 |
a2 |
| ||||
-1\right) x |
| ||||
-1\right) y |
+1\right) z2=0 .
r=a
\left( | a2 |
b2 |
| ||||
-1\right) y |
+1\right) z2=0 \leftrightarrow z=\pm
c | \sqrt{ | |
b |
a2-b2 | |
a2+c2 |
For the elliptical cylinder with equation
x2 | + | |
a2 |
y2 | |
b2 |
=1 , a>b ,
\left( | r2 |
a2 |
| ||||
-1\right) x |
-1\right) y2-z2=0 .
r=a
\left( | a2 |
b2 |
-1\right) y2-z2=0 \leftrightarrow z=\pm
\sqrt{a2-b2 | |
For the elliptical paraboloid with equation
ax2+by2-z=0 , a{\color{red}{<}}b ,
x2+y2+(z-r)2=r2 \leftrightarrow x2+y2+z2-2rz=0 .
(2ra-1) x2+(2rb-1) y2-z2=0 .
r=\tfrac{1}{2a}
\left( | b |
a |
-1\right) y2-z2=0 \leftrightarrow z=\pm\sqrt{
b-a | |
a |
The hyperboloid of two sheets with equation
- | x2 |
a2 |
-
y2 | + | |
b2 |
z2 | |
c2 |
=1 , a>b , c>0 ,
- | x2 |
a2 |
-
y2 | + | |
b2 |
(z+c)2 | |
c2 |
=1 \leftrightarrow -
x2 | |
a2 |
-
y2 | + | |
b2 |
z2 | + | |
c2 |
2z | |
c |
=0 .
x2+y2+(z-r)2=r2 \leftrightarrow x2+y2+z2-2zr=0 .
\left(- | r | + |
a2 |
1 | |
c |
| |||||
\right) x | + |
1 | |
c |
\right) y2+\left(
r | + | |
c2 |
1 | |
c |
\right)z2=0 .
r=\tfrac{a2}{c}
\left(- | a2 | + |
b2c |
1 | |
c |
| |||||
\right) y | + |
1 | |
c |
\right) z2=0 \leftrightarrow z=\pm
c | \sqrt{ | |
b |
a2-b2 | |
a2+c2 |
The elliptical cone with equation
x2 | |
a2 |
+
y2 | |
b2 |
-z2=0 , a>b ,
x2 | |
a2 |
+
y2 | |
b2 |
-(z-1)2=0 \leftrightarrow
x2 | |
a2 |
+
y2 | |
b2 |
-z2+2z=1.
x2+y2+z2=r2 .
x2
\left( | a2 |
b2 |
-1\right) y2-(1+a2) z2+2a2z=a2-r2 .
a2-b2 | |
b2 |
y2-(1+a
| ||||
\right)2=
| ||||
a |
-r2 .
r=\tfrac{a}{\sqrt{1+a2}} .
z= | a2 | \pm |
1+a2 |
1 | \sqrt{ | |
b |
a2-b2 | |
1+a2 |