In the theory of random matrices, the circular ensembles are measures on spaces of unitary matrices introduced by Freeman Dyson as modifications of the Gaussian matrix ensembles.[1] The three main examples are the circular orthogonal ensemble (COE) on symmetric unitary matrices, the circular unitary ensemble (CUE) on unitary matrices, and the circular symplectic ensemble (CSE) on self dual unitary quaternionic matrices.
The distribution of the unitary circular ensemble CUE(n) is the Haar measure on the unitary group U(n). If U is a random element of CUE(n), then UTU is a random element of COE(n); if U is a random element of CUE(2n), then URU is a random element of CSE(n), where
UR=\left(\begin{array}{ccccccc}0&-1&&&&&\ 1&0&&&&&\ &&0&-1&&&\ &&1&0&&&\ &&&&\ddots&&\ &&&&&0&-1\ &&&&&1&0\end{array}\right)UT\left(\begin{array}{ccccccc}0&1&&&&&\ -1&0&&&&&\ &&0&1&&&\ &&-1&0&&&\ &&&&\ddots&&\ &&&&&0&1\ &&&&&-1&0\end{array}\right)~.
Each element of a circular ensemble is a unitary matrix, so it has eigenvalues on the unit circle:
i\thetak | |
λ | |
k=e |
0\leq\thetak<2\pi
\thetak
p(\theta1, … ,\thetan)=
1 | |
Zn,\beta |
\prod1
i\thetak | |
|e |
-
i\thetaj | |
e |
|\beta~
n | |
\R | |
[0,2\pi] |
Zn,\beta=(2\pi)n
\Gamma(\betan/2+1) | |
\left(\Gamma(\beta/2+1)\right)n |
~,
Generalizations of the circular ensemble restrict the matrix elements of U to real numbers [so that ''U'' is in the [[orthogonal group]] O(n)] or to real quaternion numbers [so that ''U'' is in the [[symplectic group]] Sp(2n). The Haar measure on the orthogonal group produces the circular real ensemble (CRE) and the Haar measure on the symplectic group produces the circular quaternion ensemble (CQE).
The eigenvalues of orthogonal matrices come in complex conjugate pairs
i\thetak | |
e |
-i\thetak | |
e |
p(\theta1, … ,\thetam)=C\prod1(\cos\thetak-
2~, | |
\cos\theta | |
j) |
p(\theta1, … ,\thetam)=C\prod1(1-\sigma\cos\thetai)\prod1(\cos\thetak-
2~. | |
\cos\theta | |
j) |
p(\theta1, … ,\thetam)=C\prod1
2\theta | |
(1-\cos | |
i) |
\prod1(\cos\thetak-
2~. | |
\cos\theta | |
j) |
Averages of products of matrix elements in the circular ensembles can be calculated using Weingarten functions. For large dimension of the matrix these calculations become impractical, and a numerical method is advantageous. There exist efficient algorithms to generate random matrices in the circular ensembles, for example by performing a QR decomposition on a Ginibre matrix.[3]