Circle packing in a circle explained

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.

Table of solutions, 1 ≤ n ≤ 20

If more than one equivalent solution exists, all are shown.

Number of
unit circles
Enclosing circle radiusDensityOptimalityDiagram
111.0000Trivially optimal.
220.5000Trivially optimal.
3
1+2
\sqrt{3
} ≈ 2.155...
0.6466...Trivially optimal.
4

1+\sqrt{2}

≈ 2.414...
0.6864...Trivially optimal.
5
1+\sqrt{2\left(1+1
\sqrt{5
}\right)} ≈ 2.701...
0.6854...Proved optimal by Graham
(1968)
630.6666...Proved optimal by Graham
(1968)
730.7777... Trivially optimal.
8
1+1
\sin\left(\pi\right)
7
≈ 3.304...
0.7328...Proved optimal by Pirl
(1969)
9

1+\sqrt{2\left(2+\sqrt{2}\right)}

≈ 3.613...
0.6895...Proved optimal by Pirl
(1969)
103.813...0.6878...Proved optimal by Pirl
(1969)
11
1+1
\sin\left(\pi\right)
9
≈ 3.923...
0.7148...Proved optimal by Melissen
(1994)
124.029...0.7392...Proved optimal by Fodor
(2000)
13

2+\sqrt{5}

≈ 4.236...
0.7245...Proved optimal by Fodor
(2003)
144.328...0.7474...Proved optimal by Ekanayake and LaFountain
(2024).[1]
15

1+\sqrt{6+

2
\sqrt{5
} + 4 \sqrt} ≈ 4.521...
0.7339...Conjectured optimal by Pirl
(1969).
164.615...0.7512...Conjectured optimal by Goldberg
(1971).
174.792...0.7403...Conjectured optimal by Reis
(1975).
18

1+\sqrt{2}+\sqrt{6}

≈ 4.863...
0.7609...Conjectured optimal by Pirl (1969),
with additional arrangements by Graham, Lubachevsky, Nurmela, and Östergård (1998).




19

1+\sqrt{2}+\sqrt{6}

≈ 4.863...
0.8032...Proved optimal by Fodor
(1999)
205.122...0.7623...Conjectured optimal by Goldberg (1971).

Special cases

Only 26 optimal packings are thought to be rigid (with no circles able to "rattle"). Numbers in bold are prime:

Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than any smaller number > 1. (Higher density records all have rattles.)

See also

References

  1. Ekanayake . Dinesh . LaFountain . Douglas . Tight partitions for packing circles in a circle . Italian Journal of Pure and Applied Mathematics . 51 . 115–136.

[2] [3] [4] [5] [6] [7] [8]

External links