Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.
If more than one equivalent solution exists, all are shown.
Number of unit circles | Enclosing circle radius | Density | Optimality | Diagram | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1.0000 | Trivially optimal. | ||||||||
2 | 2 | 0.5000 | Trivially optimal. | ||||||||
3 |
| 0.6466... | Trivially optimal. | ||||||||
4 | 1+\sqrt{2} | 0.6864... | Trivially optimal. | ||||||||
5 |
| 0.6854... | Proved optimal by Graham (1968) | ||||||||
6 | 3 | 0.6666... | Proved optimal by Graham (1968) | ||||||||
7 | 3 | 0.7777... | Trivially optimal. | ||||||||
8 |
| 0.7328... | Proved optimal by Pirl (1969) | ||||||||
9 | 1+\sqrt{2\left(2+\sqrt{2}\right)} | 0.6895... | Proved optimal by Pirl (1969) | ||||||||
10 | 3.813... | 0.6878... | Proved optimal by Pirl (1969) | ||||||||
11 |
| 0.7148... | Proved optimal by Melissen (1994) | ||||||||
12 | 4.029... | 0.7392... | Proved optimal by Fodor (2000) | ||||||||
13 | 2+\sqrt{5} | 0.7245... | Proved optimal by Fodor (2003) | ||||||||
14 | 4.328... | 0.7474... | Proved optimal by Ekanayake and LaFountain (2024).[1] | ||||||||
15 | 1+\sqrt{6+
| 0.7339... | Conjectured optimal by Pirl (1969). | ||||||||
16 | 4.615... | 0.7512... | Conjectured optimal by Goldberg (1971). | ||||||||
17 | 4.792... | 0.7403... | Conjectured optimal by Reis (1975). | ||||||||
18 | 1+\sqrt{2}+\sqrt{6} | 0.7609... | Conjectured optimal by Pirl (1969), with additional arrangements by Graham, Lubachevsky, Nurmela, and Östergård (1998). | | |||||||
19 | 1+\sqrt{2}+\sqrt{6} | 0.8032... | Proved optimal by Fodor (1999) | ||||||||
20 | 5.122... | 0.7623... | Conjectured optimal by Goldberg (1971). |
Only 26 optimal packings are thought to be rigid (with no circles able to "rattle"). Numbers in bold are prime:
Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than any smaller number > 1. (Higher density records all have rattles.)