Chord (peer-to-peer) explained

In computing, Chord is a protocol and algorithm for a peer-to-peer distributed hash table. A distributed hash table stores key-value pairs by assigning keys to different computers (known as "nodes"); a node will store the values for all the keys for which it is responsible. Chord specifies how keys are assigned to nodes, and how a node can discover the value for a given key by first locating the node responsible for that key.

Chord is one of the four original distributed hash table protocols, along with CAN, Tapestry, and Pastry. It was introduced in 2001 by Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan, and was developed at MIT.[1] The 2001 Chord paper won an ACM SIGCOMM Test of Time award in 2011.[2]

Subsequent research by Pamela Zave has shown that the original Chord algorithm (as specified in the 2001 SIGCOMM paper, the 2001 Technical report,[3] the 2002 PODC paper,[4] andthe 2003 TON paper[5]) can mis-order the ring, produce several rings, and break the ring.[6]

Overview

Nodes and keys are assigned an

m

-bit identifier using consistent hashing. The SHA-1 algorithm is the base hashing function for consistent hashing. Consistent hashing is integral to the robustness and performance of Chord because both keys and nodes (in fact, their IP addresses) are uniformly distributed in the same identifier space with a negligible possibility of collision. Thus, it also allows nodes to join and leave the network without disruption. In the protocol, the term node is used to refer to both a node itself and its identifier (ID) without ambiguity. So is the term key.

Using the Chord lookup protocol, nodes and keys are arranged in an identifier circle that has at most

2m

nodes, ranging from

0

to

2m-1

. (

m

should be large enough to avoid collision.) Some of these nodes will map to machines or keys while others (most) will be empty.

Each node has a successor and a predecessor. The successor to a node is the next node in the identifier circle in a clockwise direction. The predecessor is counter-clockwise. If there is a node for each possible ID, the successor of node 0 is node 1, and the predecessor of node 0 is node

2m-1

; however, normally there are "holes" in the sequence. For example, the successor of node 153 may be node 167 (and nodes from 154 to 166 do not exist); in this case, the predecessor of node 167 will be node 153.

The concept of successor can be used for keys as well. The successor node of a key

k

is the first node whose ID equals to

k

or follows

k

in the identifier circle, denoted by

successor(k)

. Every key is assigned to (stored at) its successor node, so looking up a key

k

is to query

successor(k)

.

Since the successor (or predecessor) of a node may disappear from the network (because of failure or departure), each node records an arc of

2r+1

nodes in the middle of which it stands, i.e., the list of

r

nodes preceding it and

r

nodes following it. This list results in a high probability that a node is able to correctly locate its successor or predecessor, even if the network in question suffers from a high failure rate.

Protocol details

Basic query

The core usage of the Chord protocol is to query a key from a client (generally a node as well), i.e. to find

successor(k)

. The basic approach is to pass the query to a node's successor, if it cannot find the key locally. This will lead to a

O(N)

query time where

N

is the number of machines in the ring.

Finger table

To avoid the linear search above, Chord implements a faster search method by requiring each node to keep a finger table containing up to

m

entries, recall that

m

is the number of bits in the hash key. The

ith

entry of node

n

will contain

successor((n+2i-1)\bmod2m)

. The first entry of finger table is actually the node's immediate successor (and therefore an extra successor field is not needed). Every time a node wants to look up a key

k

, it will pass the query to the closest successor or predecessor (depending on the finger table) of

k

in its finger table (the "largest" one on the circle whose ID is smaller than

k

), until a node finds out the key is stored in its immediate successor.

With such a finger table, the number of nodes that must be contacted to find a successor in an N-node network is

O(logN)

. (See proof below.)

Node join

Whenever a new node joins, three invariants should be maintained (the first two ensure correctness and the last one keeps querying fast):

  1. Each node's successor points to its immediate successor correctly.
  2. Each key is stored in

successor(k)

.
  1. Each node's finger table should be correct.

To satisfy these invariants, a predecessor field is maintained for each node. As the successor is the first entry of the finger table, we do not need to maintain this field separately any more. The following tasks should be done for a newly joined node

n

:
  1. Initialize node

n

(the predecessor and the finger table).
  1. Notify other nodes to update their predecessors and finger tables.
  2. The new node takes over its responsible keys from its successor.

The predecessor of

n

can be easily obtained from the predecessor of

successor(n)

(in the previous circle). As for its finger table, there are various initialization methods. The simplest one is to execute find successor queries for all

m

entries, resulting in

O(MlogN)

initialization time. A better method is to check whether

ith

entry in the finger table is still correct for the

(i+1)th

entry. This will lead to

O(log2N)

. The best method is to initialize the finger table from its immediate neighbours and make some updates, which is

O(logN)

.

Stabilization

To ensure correct lookups, all successor pointers must be up to date. Therefore, a stabilization protocol is running periodically in the background which updates finger tables and successor pointers.

The stabilization protocol works as follows:

Potential uses

Proof sketches

With high probability, Chord contacts

O(logN)

nodes to find a successor in an

N

-node network.

Suppose node

n

wishes to find the successor of key

k

. Let

p

be the predecessor of

k

. We wish to find an upper bound for the number of steps it takes for a message to be routed from

n

to

p

. Node

n

will examine its finger table and route the request to the closest predecessor of

k

that it has. Call this node

f

. If

f

is the

ith

entry in

n

's finger table, then both

f

and

p

are at distances between

2i-1

and

2i

from

n

along the identifier circle. Hence, the distance between

f

and

p

along this circle is at most

2i-1

. Thus the distance from

f

to

p

is less than the distance from

n

to

f

: the new distance to

p

is at most half the initial distance.

This process of halving the remaining distance repeats itself, so after

t

steps, the distance remaining to

p

is at most

2m/2t

; in particular, after

logN

steps, the remaining distance is at most

2m/N

. Because nodes are distributed uniformly at random along the identifier circle, the expected number of nodes falling within an interval of this length is 1, and with high probability, there are fewer than

logN

such nodes. Because the message always advances by at least one node, it takes at most

logN

steps for a message to traverse this remaining distance. The total expected routing time is thus

O(logN)

.

If Chord keeps track of

r=O(logN)

predecessors/successors, then with high probability, if each node has probability of 1/4 of failing, find_successor (see below) and find_predecessor (see below) will return the correct nodes

Simply, the probability that all

r

nodes fail is

\left({{1}\over{4}}\right)r=O\left({{1}\over{N}}\right)

, which is a low probability; so with high probability at least one of them is alive and the node will have the correct pointer.

Pseudocode

Definitions for pseudocode
  • finger[k]: first node that succeeds
  • (n+2k-1)mod2m,1\leqk\leqm

    successor: the next node from the node in question on the identifier ring
  • predecessor: the previous node from the node in question on the identifier ring
  • The pseudocode to find the successor node of an id is given below:

    // ask node n to find the successor of id n.find_successor(id) // Yes, that should be a closing square bracket to match the opening parenthesis. // It is a half closed interval. if id ∈ (n, successor] then return successor else // forward the query around the circle n0 := closest_preceding_node(id) return n0.find_successor(id) // search the local table for the highest predecessor of id n.closest_preceding_node(id) for i = m downto 1 do if (finger[i] ∈ (n, id)) then return finger[i] return n

    The pseudocode to stabilize the chord ring/circle after node joins and departures is as follows:

    // create a new Chord ring. n.create predecessor := nil successor := n // join a Chord ring containing node n'. n.join(n') predecessor := nil successor := n'.find_successor(n) // called periodically. n asks the successor // about its predecessor, verifies if n's immediate // successor is consistent, and tells the successor about n n.stabilize x = successor.predecessor if x ∈ (n, successor) then successor := x successor.notify(n) // n' thinks it might be our predecessor. n.notify(n') if predecessor is nil or n'∈(predecessor, n) then predecessor := n' // called periodically. refreshes finger table entries. // next stores the index of the finger to fix n.fix_fingers next := next + 1 if next > m then next := 1 finger[next] := find_successor(n+2); // called periodically. checks whether predecessor has failed. n.check_predecessor if predecessor has failed then predecessor := nil

    See also

    External links

    Notes and References

    1. Stoica . I. . Ion Stoica. Morris . R. . Kaashoek . M. F. . Balakrishnan . H. . Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. 10.1145/964723.383071 . ACM SIGCOMM Computer Communication Review . 31 . 4 . 149 . 2001 .
    2. Web site: ACM SIGCOMM Test of Time Paper Award. 16 January 2022 .
    3. Stoica . I. . Ion Stoica . Morris . R. . Liben-Nowell . D. . Karger . D. . Kaashoek . M. F. . Dabek . F. . Balakrishnan . H. . Hari Balakrishnan . MIT LCS . Chord: A scalable peer-to-peer lookup service for internet applications . 2001 . MIT . 819 . https://web.archive.org/web/20120722084813/http://pdos.csail.mit.edu/chord/papers/chord-tn.pdf . 2012-07-22.
    4. Analysis of the evolution of peer-to-peer systems. Liben-Nowell . David. Balakrishnan . Hari. Karger . David. PODC '02: Proceedings of the twenty-first annual symposium on Principles of distributed computing. July 2002. 233–242. 10.1145/571825.571863.
    5. Stoica . I. . Ion Stoica. Morris . R.. Liben-Nowell . D.. Karger . D.. Kaashoek . M. F.. Dabek . F.. Balakrishnan . H. . Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Transactions on Networking. 11. 1. 25 February 2003. 17–32. 10.1109/TNET.2002.808407. 221276912 .
    6. Zave . Pamela . Pamela Zave . Using lightweight modeling to understand chord . 10.1145/2185376.2185383 . ACM SIGCOMM Computer Communication Review . 42 . 2 . 49–57 . 2012 . 11727788 .
    7. Labbai. Peer Meera. Fall 2016. T2WSN: TITIVATED TWO-TIRED CHORD OVERLAY AIDING ROBUSTNESS AND DELIVERY RATIO FOR WIRELESS SENSOR NETWORKS. Journal of Theoretical and Applied Information Technology. 91. 168–176.