In modern valence bond (VB) theory calculations, Chirgwin–Coulson weights (also called Mulliken weights) are the relative weights of a set of possible VB structures of a molecule. Related methods of finding the relative weights of valence bond structures are the Löwdin[1] and the inverse weights.
For a wave function
\Psi=\sum\limitsiCi\Phii
\Phi1,\Phi2,...,\Phin
\Psii
2 | |
C | |
i |
Sij
\Psii,\Psij
i=j
i ≠ j
\Phii
Application of the Chirgwin-Coulson formula to a molecular orbital yields the Mulliken population of the molecular orbital.[3]
A method of creating a linearly independent, complete set of valence bond structures for a molecule was proposed by Yuri Rumer. For a system with n electrons and n orbitals, Rumer's method involves arranging the orbitals in a circle and connecting the orbitals together with lines that do not intersect one another.[4] Covalent, or uncharged, structures can be created by connecting all of the orbitals with one another. Ionic, or charged, structures for a given atom can be determined by assigning a charge to a molecule, and then following Rumer's method. For the case of butadiene, the 20 possible Rumer structures are shown, where 1 and 2 are the covalent structures, 3-14 are the monoionic structures, and 15-20 are the diionic structures. The resulting VB structures can be represented by a linear combination of determinants
|a\overline{b}c\overline{d}|
\alpha
\beta
|1\overline{2}3\overline{4}|
|2\overline{1}3\overline{4}|
|1\overline{2}4\overline{3}|
|2\overline{1}4\overline{3}|
|1\overline{2}4\overline{4}|
|2\overline{1}4\overline{4}|
\phi11=
1 | |
\sqrt{2 |
An arbitrary VB structure
|\varphi1\overline{\varphi2}\varphi3\overline{\varphi4}...|
n
1,2,...,n
n
\varphi1,\varphi2,...,\varphin
|\varphi1\overline{\varphi2}\varphi3\overline{\varphi
|
Where
\alpha(k)
\beta(k)
\alpha
\beta
kth
a
b
|a\overline{b}|
|a\overline{b}|= | 1 |
\sqrt{2 |
Evaluating the determinant yields:[5]
|a\overline{b}|= | 1 |
\sqrt{2 |
\Psi=\sum\limitsiCi\Phii
\Phi1,\Phi2,...,\PhiN
Ck
WK
\PhiK
Wi=\sum\limitsjCiCj\langle\Phii|\Phij\rangle=\sum\limitsjCiCjSij
Where
S
\langle\Phii|\Phij\rangle=Sij
Other methods of computing weights of VB structure include Löwdin weights, where
Lowdin | |
W | |
i |
=\sum\limitsj,k
1/2 | |
S | |
ij |
CjS
1/2 | |
ik |
Ck
inverse | ||
W | = | |
i |
1 | ( | |
N |
| |||||||
(S-1)ii |
)
N
N=\sum\limits | ||||||||||
|
Given a set of molecular orbitals,
\Psi1,\Psi2,...,\Psim
DMO
DMO=|\Psi1\overline\Psi1\Psi2\overline\Psi2...|
Computing the determinant explicitly by multiplying this expression can be a computationally difficult task, given that each molecular orbital is composed of a combination of atomic orbitals. On the other hand, because the determinant of a product of matrices is equal to the product of determinants, the determinant can be regrouped to half-determinants, one of which contains only electrons with
\alpha
\beta
DMO
\alpha | |
=h | |
MO |
\beta | |
h | |
MO |
\alpha | |
h | |
MO |
=|\phi1\phi2...|
\beta | |
h | |
MO |
=|\overline\phi1\overline\phi2...|
Note that any given molecular orbital
\PsiMO
\phi1,\phi2,...,\phin
\Psii
Cij
\Psii=\sum\limitsjCij\phij
\alpha | |
h | |
MO |
\alpha | |
h | |
r=|\phi |
1,\phi2,...,\phin|
r
\Psii
\alpha | |
h | |
MO=\sum\limits |
\alpha | |
r |
\alpha | |
C | |
r |
\alpha= \begin{vmatrix} C | |
C | |
11 |
&C21&...Cn1\\ C12&C22&...Cn2\\ \vdots&\vdots&\ddots\\ C1n&C2n&...Cnn\\ \end{vmatrix}
The same method can be used to evaluate the half determinant for the
\beta
\beta | |
h | |
MO |
DMO
DMO=\sum\limitsr,s
\beta | |
C | |
s |
r,s
The hydrogen molecule can be considered to be a linear combination of two
1s
\varphi1
\varphi2
|\varphi1\overline{\varphi2}|
|\varphi2\overline{\varphi1}|
|\varphi1\overline{\varphi1}|
|\varphi2\overline{\varphi2}|
\PhiHL
|\varphi1\overline{\varphi2}|
|\overline{\varphi1}\varphi2|
\PhiHL=|\varphi1\overline{\varphi2}|-|\overline{\varphi1}\varphi2|
Where the negative sign arises from the antisymmetry of electron exchange. As such, the wave function for the
\Psi | |
H2 |
\Psi | |
H2 |
=C1\PhiHL+C2|\varphi1\overline{\varphi1}|+C3|\varphi2\overline{\varphi2}|
The overlap matrix between the atomic orbitals between the three valence bond configurations
\PhiHL
|\varphi1\overline{\varphi1}|
|\varphi2\overline{\varphi2}|
S= \begin{vmatrix} S11\\ S21&S22\\ S31&S32&S33\\ \end{vmatrix} = \begin{vmatrix} 1\\ 0.77890423&1\\ 0.77890423&0.43543258&1\\ \end{vmatrix}
Finding the eigenvectors of the matrix
H-ES=0
H
E
\vec{c}
\PsiH=\vec{c}\{\PhiHL,|\varphi1\overline{\varphi1}|,|\varphi2\overline{\varphi2}|\}=C1\PhiHL+C2|\varphi1\overline{\varphi1}|+C3|\varphi2\overline{\varphi2}|
Solving for the VB-vector
\vec{c}
C1=0.787469
C2=C3=0.133870
W1=C
2S | |
11 |
+C1C2S12+C1C3S13=0.784
W2=W3=0.108
To check for consistency, the inverse weights can be computed by first determining the inverse of the overlap matrix:
S-1= \begin{vmatrix} 6.46449\\ -3.5078&3.13739\ -3.5078&1.36612&3.13739\ \end{vmatrix}
Next, the normalization constant
N
N=\sum\limitsK
| |||||||
(S-1)KK |
=0.0185
The final weights are:
W | ( | ||||
|
| |||||||
(S-1)11 |
)=0.803
W2=W3=0.098
Informally, the computed weights indicate that the wave function for the
Determining the relative weights of each resonance structure of ozone requires, first, the determination of the possible VB structures for
p
p
ith
\phii
kth
\Phik
\Phi | ||||
|
\Phi | ||||
|
\Phi | ||||
|
\Phi4=|\phi1\overline{\phi1}\phi2\overline{\phi2}|
\Phi5=|\phi2\overline{\phi2}\phi3\overline{\phi3}|
\Phi6=|\phi1\overline{\phi1}\phi3\overline{\phi3}|
p
p
\pii
p
\begin{vmatrix} \pi1\\ \pi2\\ \pi3\\ \end{vmatrix}= \begin{vmatrix} C11&C12&C13\\ C21&C22&C23\\ C31&C32&C33\\ \end{vmatrix} \begin{vmatrix} \phi1\\ \phi2\\ \phi3\\ \end{vmatrix}= \begin{vmatrix} 0.368&0.764&0.368\\ 0.710&0&-0.710\\ 0.614&-0.671&0.614\\ \end{vmatrix} \begin{vmatrix} \phi1\\ \phi2\\ \phi3\\ \end{vmatrix}
Where
Cij
\phij
\pii
|\pi1\overline{\pi1}\pi2\overline{\pi2}|
|\phi1\phi2|g= \begin{Vmatrix} C11&C12\\ C21&C22\\ \end{Vmatrix}=-0.542
|\phi2\phi3|g= \begin{Vmatrix} C12&C13\\ C22&C23\\ \end{Vmatrix}=-0.542
|\phi1\phi3|g= \begin{Vmatrix} C11&C13\\ C21&C23\\ \end{Vmatrix}= -0.523
By the method of half determinant expansion, the coefficient,
Ci
|\phii\overline{\phij}\phik\overline{\phil}|
|\phii\overline{\phij}\phik\overline{\phil}|=|\phii\phik||\phij\phil|
Which implies that the ground state has the following coefficients:
\begin{align} \Psig&=-0.416\Phi1+0.400\Phi2+0.400\Phi3+0.294\Phi4+0.294\Phi5+0.274\Phi6\\ &=-0.294(|\phi2\overline{\phi2}\phi1\overline{\phi3}|+|\phi2\overline{\phi2}\phi3\overline{\phi1}|)+0.283(|\phi1\overline{\phi1}\phi2\overline{\phi3}|+|\phi1\overline{\phi1}\phi3\overline{\phi2}|)+0.283(|\phi1\overline{\phi2}\phi3\overline{\phi3}|+|\phi2\overline{\phi1}\phi3\overline{\phi3}|)+\\ & 0.294|\phi1\overline{\phi1}\phi2\overline{\phi2}|+0.294|\phi2\overline{\phi2}\phi3\overline{\phi3}|+0.274|\phi1\overline{\phi1}\phi3\overline{\phi3}| \end{align}
Given the following overlap matrix for the half determinants:
S=\begin{vmatrix} \langle|\phi1\phi2|||\phi1\phi2|\rangle\\ \langle|\phi1\phi2|||\phi1\phi3|\rangle&\langle|\phi1\phi3|||\phi1\phi3|\rangle\\ \langle|\phi1\phi2|||\phi2\phi3|\rangle&\langle|\phi1\phi3|||\phi2\phi3|\rangle& \langle|\phi2\phi3|||\phi2\phi3|\rangle \end{vmatrix}= \begin{vmatrix} 0.98377\\ 0.12634&0.99993\\ 0.00810&0.12634&0.98377 \end{vmatrix}
The overlap between two VB structures represented by the product of two VB determinants
\langle|\phia\overline{\phib}\phic\overline{\phid}|||\phiw\overline{\phix}\phiy\overline{\phiz}|\rangle
\langle|\phia\overline{\phib}\phic\overline{\phid}|||\phiw\overline{\phix}\phiy\overline{\phiz}|\rangle=(\langle|\phia\phic|||\phiw\phiy|\rangle)(\langle|\phib\phid|||\phix\phiz|\rangle)
For example, the overlap between the orbitals
|\phi1\overline{\phi2}\phi3\overline{\phi3}|
|\phi1\overline{\phi2}\phi2\overline{\phi3}|
\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi1\overline{\phi2}\phi2\overline{\phi3}|\rangle=(\langle|\phi1\phi3|||\phi1\phi2|\rangle)(\langle|\phi2\phi3|||\phi2\phi3|\rangle)=(0.12634)(0.98377)=0.12429
The weights of the standard Lewis structures for
W(\Psi2)
W(\Psi3)
\begin{align} W(|\phi1\overline{\phi2}\phi3\overline{\phi3}|)&=\sum\limitsk0.283Ck\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\Phik|\rangle\\ &=0.283[-0.294(\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi2\overline{\phi2}\phi1\overline{\phi3}|\rangle+\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi2\overline{\phi2}\phi3\overline{\phi1}|\rangle)+0.283(\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi1\overline{\phi1}\phi2\overline{\phi3}|\rangle+\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi1\overline{\phi1}\phi3\overline{\phi2}|\rangle)\\ & +0.283(\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi1\overline{\phi2}\phi3\overline{\phi3}|\rangle+\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi2\overline{\phi1}\phi3\overline{\phi3}|\rangle)+0.294\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi1\overline{\phi1}\phi2\overline{\phi2}|\rangle+0.294\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi2\overline{\phi2}\phi3\overline{\phi3}|\rangle\\ & +0.274\langle|\phi1\overline{\phi2}\phi3\overline{\phi3}|||\phi1\overline{\phi1}\phi3\overline{\phi3}|\rangle]\\ &=0.111 \end{align}
W(|\phi2\overline{\phi1}\phi3\overline{\phi3}|)=W(|\phi1\overline{\phi1}\phi2\overline{\phi3}|)=W(|\phi1\overline{\phi1}\phi3\overline{\phi2}|)=0.111
The weights for the standard lewis structures would be the sum of the weights of the constituent determinants. As such:
W(\Psi2)=W(|\phi1\overline{\phi1}\phi2\overline{\phi3}|)+W(|\phi1\overline{\phi1}\phi3\overline{\phi2}|)=0.222
W(\Psi3)=W(|\phi1\overline{\phi2}\phi3\overline{\phi3}|)+W(|\phi2\overline{\phi1}\phi3\overline{\phi3}|)=0.222
This compares well with reported Chirgwin–Coulson weights of 0.226 for the standard Lewis structure of ozone in the ground state.[10]
For the diradical state,
\Psi1
W(|\phi2\overline{\phi2}\phi1\overline{\phi3}|)=\sum\limitsk-0.294Ck|\phi2\overline{\phi2}\phi1\overline{\phi3}||\Phik|=0.106
W(|\phi2\overline{\phi2}\phi3\overline{\phi1}|)=0.106
W(\Psi1)=W(|\phi2\overline\phi2\phi1\overline\phi3|)+W(|\phi2\overline\phi2\phi1\overline\phi3|)=0.106+0.106=0.212
This also compares favorably with reported Chirgwin–Coulson weights of 0.213 for the diradical state of ozone in the ground state.
Borazine, (chemical formula
Disulfur dinitride is a square planar compound that contains a 6 electron conjugated
\pi