In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:
+1 | |
\int | |
-1 |
f(x) | |
\sqrt{1-x2 |
}dx
and
+1 | |
\int | |
-1 |
\sqrt{1-x2}g(x)dx.
In the first case
+1 | |
\int | |
-1 |
f(x) | |
\sqrt{1-x2 |
}dx ≈
n | |
\sum | |
i=1 |
wif(xi)
where
xi=\cos\left(
2i-1 | |
2n |
\pi\right)
and the weight
wi=
\pi | |
n |
.
In the second case
+1 | |
\int | |
-1 |
\sqrt{1-x2}g(x)dx ≈
n | |
\sum | |
i=1 |
wig(xi)
where
xi=\cos\left(
i | |
n+1 |
\pi\right)
and the weight
wi=
\pi | |
n+1 |
\sin2\left(
i | |
n+1 |
\pi\right).