Chebyshev–Gauss quadrature explained

In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

+1
\int
-1
f(x)
\sqrt{1-x2

}dx

and

+1
\int
-1

\sqrt{1-x2}g(x)dx.

In the first case

+1
\int
-1
f(x)
\sqrt{1-x2

}dx

n
\sum
i=1

wif(xi)

where

xi=\cos\left(

2i-1
2n

\pi\right)

and the weight

wi=

\pi
n

.

[1]

In the second case

+1
\int
-1

\sqrt{1-x2}g(x)dx

n
\sum
i=1

wig(xi)

where

xi=\cos\left(

i
n+1

\pi\right)

and the weight

wi=

\pi
n+1

\sin2\left(

i
n+1

\pi\right).

[2]

See also

References

  1. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, . Equation 25.4.38.
  2. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, . Equation 25.4.40.

External links