Erwin Chargaff Explained

Erwin Chargaff
Birth Date:11 August 1905
Birth Place:Czernowitz, Duchy of Bukovina, Austria-Hungary
Death Place:Manhattan, New York City, United States
Nationality:American (since 1940)
Fields:Biochemistry
Workplaces:Yale University (1925–1930), University of Berlin (1930–1933), Pasteur Institute (1933–1934), Columbia University (1935–1974), Roosevelt Hospital (1974–1992)
Alma Mater:Vienna College of Technology (1924–1928)
Doctoral Advisor:Fritz Feigl
Doctoral Students:Seymour S. Cohen, Boris Magasanik
Known For:Chargaff's rules
Awards:Pasteur Medal (1949), National Medal of Science (1974)
Signature:Erwin Chargaff signature.svg
Signature Alt:Erwin Chargaff signature.png
Children:Thomas Chargaff
Education:Maximiliansgymnasium

Erwin Chargaff (11 August 1905 – 20 June 2002) was an Austro-Hungarian-born American biochemist, writer, Bucovinian Jew who emigrated to the United States during the Nazi era, and professor of biochemistry at Columbia University medical school.[1] He wrote a well-reviewed[2] [3] autobiography, Heraclitean Fire: Sketches from a Life Before Nature.[4]

Early life

Chargaff was born on 11 August 1905 to a Jewish family in Czernowitz, Duchy of Bukovina, Austria-Hungary, which is now Chernivtsi, Ukraine.[5]

At the outbreak of World War I, his family moved to Vienna, where he attended the Maximiliansgymnasium (now the Gymnasium Wasagasse). He then went on to the Vienna College of Technology (Technische Hochschule Wien) where he met his future wife Vera Broido.

From 1924 to 1928, Chargaff studied chemistry in Vienna, and earned a doctorate working under the direction of Fritz Feigl.[6] [7]

He married Vera Broido in 1928. Chargaff had one son, Thomas Chargaff.

From 1925 to 1930, Chargaff served as the Milton Campbell Research Fellow in organic chemistry at Yale University, but he did not like New Haven, Connecticut. Chargaff returned to Europe, where he lived from 1930 to 1934, serving first as the assistant in charge of chemistry for the department of bacteriology and public health at the University of Berlin (1930–1933) and then, being forced to resign his position in Germany as a result of the Nazi policies against Jews, as a research associate at the Pasteur Institute in Paris (1933–1934).

Columbia University

Chargaff immigrated to Manhattan, New York City in 1935,[8] taking a position as a research associate in the department of biochemistry at Columbia University, where he spent most of his professional career. Chargaff became an assistant professor in 1938 and a professor in 1952. After serving as department chair from 1970 to 1974, Chargaff retired as professor emeritus. After his retirement as professor emeritus, Chargaff moved his lab to Roosevelt Hospital, where he continued to work until his retirement in 1992.

He became an American citizen in 1940.

During his time at Columbia, Chargaff published numerous scientific papers, dealing primarily with the study of nucleic acids such as DNA using chromatographic techniques. He became interested in DNA in 1944 after Oswald Avery identified the molecule as the basis of heredity.[9] [7] [10] Cohen says that "Almost alone among the scientists of this time, Chargaff accepted the unusual Avery paper and concluded that genetic differences among DNAs must be reflected in chemical differences among these substances. He was actually the first biochemist to reorganize his laboratory to test this hypothesis, which he went on to prove by 1949."[8] Chargaff said of the Avery discovery: "I saw before me (in 1944), in dark contours, the beginning of a grammar of biology",[7] and in 1950 he published a paper with the conclusion that the amounts of adenine and thymine in DNA were roughly the same, as were the amounts of cytosine and guanine.[11] This later became known as the first of Chargaff's rules. Instrumental in his DNA discoveries were the innovation of paper chromatography,[12] and the commercially-available ultraviolet spectrophotometer tool.[7]

Chargaff lectured about his results at Cambridge University in 1952, with Watson and Crick in attendance.[13]

Chargaff's rules

Key conclusions from Erwin Chargaff's work are now known as Chargaff's rules. The first and best known achievement was to show that in natural DNA the number of guanine units equals the number of cytosine units and the number of adenine units equals the number of thymine units. In human DNA, for example, the four bases are present in these percentages: A=30.9% and T=29.4%; G=19.9% and C=19.8%. This strongly hinted towards the base pair makeup of the DNA, although Chargaff did not explicitly state this connection himself. For this research, Chargaff is credited with disproving the tetranucleotide hypothesis[14] (Phoebus Levene's widely accepted hypothesis that DNA was composed of a large number of repeats of GACT). Most researchers had previously assumed that deviations from equimolar base ratios (G = A = C = T) were due to experimental error, but Chargaff documented that the variation was real, with [C + G] typically being slightly less abundant. He did his experiments with the newly developed paper chromatography and ultraviolet spectrophotometer. Chargaff met Francis Crick and James D. Watson at Cambridge in 1952, and, despite not getting along with them personally,[15] he explained his findings to them. Chargaff's research would later help the Watson and Crick laboratory team to deduce the double helical structure of DNA.

The second of Chargaff's rules is that the composition of DNA varies from one species to another, in particular in the relative amounts of A, G, T, and C bases. Such evidence of molecular diversity, which had been presumed absent from DNA, made DNA a more credible candidate for the genetic material than protein.[16]

The first empirical generalization of Chargaff's second parity rule, called the Symmetry Principle, was proposed by Vinayakumar V. Prabhu [17] in 1993. This principle states that for any given oligonucleotide, its frequency is approximately equal to the frequency of its complementary reverse oligonucleotide. A theoretical generalization[18] was mathematically derived by Michel E. B. Yamagishi and Roberto H. Herai in 2011.[19]

Later life

Beginning in the 1950s, Chargaff became increasingly outspoken about the failure of the field of molecular biology, claiming that molecular biology was "running riot and doing things that can never be justified".[20] He believed that human knowledge will always be limited in relation to the complexity of the natural world, and that it is simply dangerous when humans believe that the world is a machine, even assuming that humans can have full knowledge of its workings. He also believed that in a world that functions as a complex system of interdependency and interconnectedness, genetic engineering of life will inevitably have unforeseen consequences.

After Francis Crick, James Watson and Maurice Wilkins received the 1962 Nobel Prize for their work on discovering the double helix of DNA, Chargaff withdrew from his lab and wrote to scientists all over the world about his exclusion.[21]

Chargaff warned in his 1978 book Heraclitean Fire of a "molecular Auschwitz" that "the technology of genetic engineering poses a greater threat to the world than the advent of nuclear technology. An irreversible attack on the biosphere is something so unheard of, so unthinkable to previous generations, that I only wish that mine had not been guilty of it".[22] [23] [24]

The IVF technique earned his scathing disapprobation. In 1987, "Engineering a Molecular Nightmare" was published in the journal Nature,[25] which was then sent by David Alton and his colleagues in the All-Party Parliamentary Pro-Life Group (APPPLG) to every Westminster MP in an effort to minimise the forthcoming harm caused by the Human Fertilisation and Embryology Act 1990.

Chargaff wrote in 2002 that "There are two nuclei that man should never have touched: the atomic nucleus and the cell nucleus. The technology of genetic engineering poses a greater threat to the world than the advent of nuclear technology."[26]

Chargaff died later that year on 20 June 2002 in Manhattan, New York City.[27] He is buried in Mount Carmel Cemetery (Queens).[28]

Honors

Honors awarded to him include the Pasteur Medal (1949); Carl Neuberg Medal (1958);[29] Charles Leopold Mayer Prize;[30] inaugural Heineken Prize (Amsterdam, 1964);[30] Gregor Mendel Medal (Halle, 1968);[29] and the National Medal of Science (1974).[31]

Elected to the American Academy of Arts and Sciences (1961), the National Academy of Sciences (1965), and the American Philosophical Society (1979)[32] and the German Academy of Sciences.[5]

Honorary Doctorate awarded by Columbia University in 1975.[32]

Books authored

See also

Sources

External links

Notes and References

  1. News: Erwin Chargaff: Disillusioned biochemist who pioneered our understanding of DNA . The Guardian. 2 July 2002 . Pearce . Wright . 22 November 2011.
  2. Hecht F. 1979 . Hecht F. Heraclitean fire. Sketches from a life before nature . American Journal of Human Genetics . 31. 6 . 759.
  3. Edsall JT. 1979 . Heraclitean fire. Sketches from a life before nature . Isis . 70. 2 . 276–277. 10.1086/352204 .
  4. Book: Chargaff, Erwin . Heraclitean Fire: Sketches from a Life Before Nature . 1978 . Rockefeller University Press . 0-874-70029-9 . 252.
  5. Book: Hargittai, Istvan. Candid Science: Conversations With Famous Chemists. 26 January 2000. World Scientific. 978-1-78326-214-4.
  6. Book: Erwin Chargaff Summary. www.bookrags.com.
  7. Weintraub . Bob . Erwin Chargaff and Chargaff's Rules . Chemistry in Israel - Bulletin of the Israel Chemical Society . September 2006 . 22 . 29–31 .
  8. Erwin Chargaff, 11 August 1905 · 20 June 2002. 1558287. Cohen. Seymour S.. Proceedings of the American Philosophical Society. 2004. 148. 2. 222–228.
  9. Avery. Oswald T.. MacLeod. Colin M.. McCarty. Maclyn. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types - Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. Journal of Experimental Medicine. February 1, 1944. 79. 2. 137–158. 19871359. 2135445. 10.1084/jem.79.2.137.
  10. 10.1038/nature01398. Discovering genes are made of DNA . 2003 . McCarty . Maclyn . Nature . 421 . 6921 . 406 . 12540908 . 2003Natur.421..406M. 4335285. free .
  11. Chargaff. Erwin. Stephen . Zamenhof . Charlotte . Green . Composition of human desoxypentose nucleic acid. Nature. May 1950. 165. 4202. 756–7. 15416834. 1950Natur.165..756C . 10.1038/165756b0 . 33722052.
  12. 10.1042/bj0380224. Qualitative analysis of proteins: A partition chromatographic method using paper. 1944. Consden. R.. Gordon. A. H.. Martin. A. J. P.. Biochemical Journal. 38. 3. 224–232. 16747784. 1258072.
  13. Book: Betz, Frederick. Managing Science: Methodology and Organization of Research. 30 November 2010. Springer Science & Business Media. 978-1-4419-7488-4.
  14. Yeast nucleic acid . Levine . P.A. . Biochem. Z. . 1909 . 17 . 120–131 .
  15. Book: Landmark Experiments in Molecular Biology. Michael Fry. 2016. Academic Press. 220. 978-0-12-802074-6.
  16. Book: Baianu . I.C. . Mathematical and Theoretical Biology. Volume 2 - Mathematical and Molecular Biophysics . 2 February 2010 . I.C. Baianu .
  17. Prabhu VV . 1993 . Symmetry observation in long nucleotide sequences . Nucleic Acids Research . 21 . 12 . 2797–2800. 10.1093/nar/21.12.2797 . 8332488 . 309655 .
  18. Book: Yamagishi MEB . 2017. Mathematical Grammar of Biology . Springer. SpringerBriefs in Mathematics . 10.1007/978-3-319-62689-5. 1112.1528. 978-3-319-62688-8. 16742066.
  19. Book: Yamagishi ME, Herai RH . 2011 . Chargaff's "Grammar of Biology": New Fractal-like Rules. SpringerBriefs in Mathematics . 10.1007/978-3-319-62689-5 . 1112.1528. 978-3-319-62688-8 . 16742066 .
  20. Book: Newton, David E.. DNA Technology: A Reference Handbook, 2nd Edition. 2016-12-12. 189. ABC-CLIO. 9781440850486. en.
  21. News: No Nobel Prize for Whining . Judson . Horace . 20 October 2003 . The New York Times. 2007-08-03.
  22. Web site: Check the Facts: "A Gigantic Slaughterhouse ...". August 2011.
  23. Book: 10.1007/978-1-4614-8541-4_12. Genetic Engineering. Healthcare and Biomedical Technology in the 21st Century. 2014. Baran. George R.. Kiani. Mohammad F.. Samuel. Solomon Praveen. 383–416. 978-1-4614-8540-7.
  24. Web site: Eminent Scientists Comment on the Dangers of Genetically Engineered Foods.
  25. 10.1038/327199a0. Engineering a molecular nightmare. 1987. Chargaff. Erwin. Nature. 327. 6119. 199–200. 3472081. 1987Natur.327..199C. 28373983.
  26. News: Serra . Miquel Àngel . "Genetics and human improvement" . Fundacio Víctor Grífols i Lucas Foundation . 20 February 2018.
  27. News: Nicholas . Wade . Erwin Chargaff, 96, Pioneer In DNA Chemical Research . Erwin Chargaff, whose research into the chemical composition of DNA helped lay the groundwork for James Watson and Francis Crick's discovery of its double-helix structure — the pivotal finding of 20th-century biology — died on June 20 in a New York hospital. He was 96. . . June 30, 2002 . 2014-12-23 .
  28. https://www.findagrave.com/memorial/95983059/erwin-chargaff Erwin Chargaff in Findagrave.com
  29. Book: 10.1142/9781860943836_0003. Erwin Chargaff. Candid Science. 2000. 14–28. 978-1-86094-151-1.
  30. Web site: Erwin Chargaff, USA — KNAW.
  31. Web site: The President's National Medal of Science: Recipient Details - NSF - National Science Foundation. www.nsf.gov.
  32. Proceedings of the American Philosophical Society. 148 . 4 . Erwin Chargaff 1905 – 2002: A Biographical Memoir by Seymour Cohen with selected bibliography by Robert Lehman. Cohen . Seymour Stanley .