In mathematical theory of differential equations the Chaplygin's theorem (Chaplygin's method) states about existence and uniqueness of the solution to an initial value problem for the first order explicit ordinary differential equation. This theorem was stated by Sergey Chaplygin.[1] It is one of many comparison theorems.
Consider an initial value problem: differential equation
y'\left(t\right)=f\left(t,y\left(t\right)\right)
t\in\left[t0;\alpha\right]
\alpha>t0
with an initial condition
y\left(t0\right)=y0
For the initial value problem described above the upper boundary solution and the lower boundary solution are the functions
\overline{z}\left(t\right)
\underline{z}\left(t\right)
t\in\left(t0;\alpha\right]
t\in\left[t0;\alpha\right]
\underline{z}\left(t0\right)<y\left(t0\right)<\overline{z}\left(t0\right)
\underline{z}'\left(t\right)<f(t,\underline{z}\left(t\right))
\overline{z} '\left(t\right)>f(t,\overline{z}\left(t\right))
t\in\left(t0;\alpha\right]
Given the aforementioned initial value problem and respective upper boundary solution
\overline{z}\left(t\right)
\underline{z}\left(t\right)
t\in\left[t0;\alpha\right]
f\left(t,y\left(t\right)\right)
t\in\left[t0;\alpha\right]
y\left(t\right)\in\left[\underline{z}\left(t\right);\overline{z}\left(t\right)\right]
y
\overline{z}\left(t\right)
\underline{z}\left(t\right)
K>0
t\in\left[t0;\alpha\right]
y1\left(t\right)\in\left[\underline{z}\left(t\right);\overline{z}\left(t\right)\right]
y2\left(t\right)\in\left[\underline{z}\left(t\right);\overline{z}\left(t\right)\right]
\left\vertf\left(t,y1\left(t\right)\right)-f\left(t,y2\left(t\right)\right)\right\vert\leK\left\verty1\left(t\right)-y2\left(t\right)\right\vert
then in
t\in\left[t0;\alpha\right]
y\left(t\right)
t\in\left[t0;\alpha\right]
\underline{z}\left(t\right)<y\left(t\right)<\overline{z}\left(t\right)
Source:
Inside inequalities within both of definitions of the upper boundary solution and the lower boundary solution signs of inequalities (all at once) can be altered to unstrict. As a result, inequalities sings at Chaplygin's theorem concusion would change to unstrict by
\overline{z}\left(t\right)
\underline{z}\left(t\right)
\overline{z}\left(t\right)=y\left(t\right)
\underline{z}\left(t\right)=y\left(t\right)
If
y\left(t\right)
t\in\left[t0;\alpha\right]
Chaplygin's theorem answers the question about existence and uniqueness of the solution in
t\in\left[t0;\alpha\right]
K
\alpha
K=K\left(\alpha\right)
t\in\left[t0;+infty\right)
\overline{z}\left(t\right)
\underline{z}\left(t\right)
\alpha\in\left(t0;+infty\right)
\left\{K\left(\alpha\right)\right\}
t\in\left[t0;+infty\right)