In gas dynamics, Chaplygin's equation, named after Sergei Alekseevich Chaplygin (1902), is a partial differential equation useful in the study of transonic flow.[1] It is
\partial2\Phi | + | |
\partial\theta2 |
v2 | |
1-v2/c2 |
\partial2\Phi | |
\partialv2 |
+v
\partial\Phi | |
\partialv |
=0.
Here,
c=c(v)
c2/(\gamma-1)=h0-v2/2
\gamma
h0
\partial2\Phi | |
\partial\theta2 |
| ||||||||||||||||
+ v |
\partial2\Phi | |
\partialv2 |
+v
\partial\Phi | |
\partialv |
=0.
The Bernoulli equation (see the derivation below) states that maximum velocity occurs when specific enthalpy is at the smallest value possible; one can take the specific enthalpy to be zero corresponding to absolute zero temperature as the reference value, in which case
2h0
For two-dimensional potential flow, the continuity equation and the Euler equations (in fact, the compressible Bernoulli's equation due to irrotationality) in Cartesian coordinates
(x,y)
(vx,vy)
h
\rho
\begin{align} | \partial |
\partialx |
(\rhovx)+
\partial | |
\partialy |
(\rhovy)&=0,\\ h+
1 | |
2 |
v2&=ho. \end{align}
\rho=\rho(s,h)
ho
v2=
2 | |
v | |
x |
+
2 | |
v | |
y |
s
\rho=\rho(h)
\rho=\rho(v)
Since the flow is irrotational, a velocity potential
\phi
d\phi=vxdx+vydy
vx=vx(x,y)
vy=vy(x,y)
x=x(vx,vy)
y=y(vx,vy)
\Phi=xvx+yvy-\phi
such then its differential is
d\Phi=xdvx+ydvy
x=
\partial\Phi | |
\partialvx |
, y=
\partial\Phi | |
\partialvy |
.
Introducing another coordinate transformation for the independent variables from
(vx,vy)
(v,\theta)
vx=v\cos\theta
vy=v\sin\theta
v
\theta
vx
\begin{align} x&=\cos\theta
\partial\Phi | - | |
\partialv |
\sin\theta | |
v |
\partial\Phi | |
\partial\theta |
,\\ y&=\sin\theta
\partial\Phi | + | |
\partialv |
\cos\theta | |
v |
\partial\Phi | |
\partial\theta |
,\\ \phi&=-\Phi+v
\partial\Phi | |
\partialv |
. \end{align}
The continuity equation in the new coordinates become
d(\rhov) | \left( | |
dv |
\partial\Phi | |
\partialv |
+
1 | |
v |
\partial2\Phi | |
\partial\theta2 |
\right)+\rhov
\partial2\Phi | |
\partialv2 |
=0.
For isentropic flow,
dh=\rho-1c2d\rho
c
d(\rhov) | |
dv |
=\rho\left(1-
v2 | |
c2 |
\right)
where
c=c(v)
\partial2\Phi | + | |
\partial\theta2 |
v2 | |||
|
\partial2\Phi | |
\partialv2 |
+v
\partial\Phi | |
\partialv |
=0.