In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.[1] [2] [3]
Consider a fluid mass
M
V
\rho(x,t)
p(x,t)
x
The density moments are defined as
M=\intV\rhodx, Ii=\intV\rhoxidx, Iij=\intV\rhoxixjdx, Iijk=\intV\rhoxixjxkdx, Iijk\ell=\intV\rhoxixjxkx\elldx, etc.
the pressure moments are
\Pi=\intVpdx, \Pii=\intVpxidx, \Piij=\intVpxixjdx, \Piijk=\intVpxixjxkdx etc.
the kinetic energy moments are
Tij=
1 | |
2 |
\intV\rhouiujdx, Tij;k=
1 | |
2 |
\intV\rhouiujxkdx, Tij;k\ell=
1 | |
2 |
\intV\rhouiujxkx\elldx, etc.
and the Chandrasekhar potential energy tensor moments are
Wij=-
1 | |
2 |
\intV\rho\Phiijdx, Wij;k=-
1 | |
2 |
\intV\rho\Phiijxkdx, Wij;k\ell=-
1 | |
2 |
\intV\rho\Phiijxkx\elldx, etc. where \Phiij=G\intV\rho(x')
(xi-xi')(xj-xj') | |
|x-x'|3 |
dx'
where
G
All the tensors are symmetric by definition. The moment of inertia
I
T
W
I=Iii=\intV\rho|x|2dx, T=Tii=
1 | |
2 |
\intV\rho|u|2dx, W=Wii=-
1 | |
2 |
\intV\rho\Phidx where \Phi=\Phiii=\intV
\rho(x') | |
|x-x'| |
dx'
Chandrasekhar assumed that the fluid mass is subjected to pressure force and its own gravitational force, then the Euler equations is
\rho
dui | |
dt |
=-
\partialp | |
\partialxi |
+\rho
\partial\Phi | |
\partialxi |
, where
d | |
dt |
=
\partial | |
\partialt |
+uj
\partial | |
\partialxj |
| |||||||
dt2 |
=0
1 | |
2 |
| |||||||
dt2 |
=2Tij+Wij+\deltaij\Pi
In steady state, the equation becomes
2Tij+Wij=-\deltaij\Pi
1 | |
6 |
d2Iijk | |
dt2 |
=2(Tij;k+Tjk;i+Tki;j)+Wij;k+Wjk;i+Wki;j+\deltaij\Pik+\deltajk\Pii+\deltaki\Pij
In steady state, the equation becomes
2(Tij;k+Tik;j)+Wij;k+Wik;j=-\deltaij\PiK-\deltaik\Pij
The Euler equations in a rotating frame of reference, rotating with an angular velocity
\Omega
\rho
dui | |
dt |
=-
\partialp | |
\partialxi |
+\rho
\partial\Phi | |
\partialxi |
+
1 | |
2 |
\rho
\partial | |
\partialxi |
|\Omega x x|2+2\rho\varepsiloni\ellu\ell\Omegam
where
\varepsiloni\ell
1 | |
2 |
|\Omega x x|2
2u x \Omega
In steady state, the second order virial equation becomes
2Tij+Wij+\Omega2Iij-\Omegai\OmegakIkj+2\epsiloni\ell\Omegam\intV\rhou\ellxjdx=-\deltaij\Pi
If the axis of rotation is chosen in
x3
Wij+\Omega2(Iij-\deltai3I3j)=-\deltaij\Pi
and Chandrasekhar shows that in this case, the tensors can take only the following form
Wij=\begin{pmatrix} W11&W12&0\\ W21&W22&0\\ 0&0&W33\end{pmatrix}, Iij=\begin{pmatrix} I11&I12&0\\ I21&I22&0\\ 0&0&I33\end{pmatrix}
In steady state, the third order virial equation becomes
2(Tij;k+Tik;j)+Wij;k+Wik;j+\Omega2Iijk-\Omegai\Omega\ellI\ell+2\varepsiloni\ell\Omegam\intV\rhou\ellxjxkdx=-\deltaij\Pik-\deltaik\Pij
If the axis of rotation is chosen in
x3
Wij;k+Wik;j+\Omega2(Iijk-\deltai3I3jk)=-(\deltaij\Pik+\deltaik\Pij)
With
x3
1 | |
3 |
(2Wij;kl+2Wik;lj+2Wil;jk+Wij;k;l+Wik;l;j+Wil;j;k)+\Omega2(Iijkl-\deltai3I3jkl)=-(\deltaij\Pikl+\deltaik\Pilj+\deltail\Pijk)
Consider the Navier-Stokes equations instead of Euler equations,
\rho
dui | |
dt |
=-
\partialp | |
\partialxi |
+\rho
\partial\Phi | |
\partialxi |
+
\partial\tauik | |
\partialxk |
, where \tauik=\rho\nu\left(
\partialui | + | |
\partialxk |
\partialuk | - | |
\partialxi |
2 | |
3 |
\partialul | |
\partialxl |
\deltaik\right)
and we define the shear-energy tensor as
Sij=\intV\tauijdx.
With the condition that the normal component of the total stress on the free surface must vanish, i.e.,
(-p\deltaik+\tauik)nk=0
n
1 | |
2 |
| |||||||
dt2 |
=2Tij+Wij+\deltaij\Pi-Sij.
This can be easily extended to rotating frame of references.