In atmospheric radiation, Chandrasekhar's X- and Y-function appears as the solutions of problems involving diffusive reflection and transmission, introduced by the Indian American astrophysicist Subrahmanyan Chandrasekhar.[1] [2] [3] [4] [5] The Chandrasekhar's X- and Y-function
X(\mu), Y(\mu)
0\leq\mu\leq1
\begin{align} X(\mu)&=1+\mu
1 | |
\int | |
0 |
\Psi(\mu') | |
\mu+\mu' |
[X(\mu)X(\mu')-Y(\mu)Y(\mu')]d\mu',\\[5pt] Y(\mu)&=
-\tau1/\mu | |
e |
+\mu
1 | |
\int | |
0 |
\Psi(\mu') | |
\mu-\mu' |
[Y(\mu)X(\mu')-X(\mu)Y(\mu')]d\mu' \end{align}
where the characteristic function
\Psi(\mu)
\mu
1\Psi(\mu) | |
\int | |
0 |
d\mu\leq
1 | |
2 |
,
and
0<\tau1<infty
X(\mu) → H(\mu), Y(\mu) → 0 as \tau1 → infty
and also
X(\mu) → 1, Y(\mu) →
-\tau1/\mu | |
e |
as \tau1 → 0.
The
X
Y
\begin{align} X(\mu)&=
(-1)n | |
\mu1 … \mun |
1 | |||||||||
|
1 | |
W(\mu) |
[P(-\mu)
-\tau1/\mu | |
C | |
0(-\mu)-e |
P(\mu)C1(\mu)],\\[5pt] Y(\mu)&=
(-1)n | |
\mu1 … \mun |
1 | |||||||||
|
1 | |
W(\mu) |
-\tau1/\mu | |
[e |
P(\mu)C0(\mu)-P(-\mu)C1(-\mu)] \end{align}
where
C0
C1
P(\mu)=
n | |
\prod | |
i=1 |
(\mu-\mui)
\mui
W(\mu)=
n | |
\prod | |
\alpha=1 |
2\mu | |
(1-k | |
\alpha |
2)
k\alpha
1=2
n | |
\sum | |
j=1 |
aj\Psi(\muj) | ||||||
|
where
aj
aj=
1 | |
P2n'(\muj) |
1 | |
\int | |
-1 |
P2n(\muj) | |
\mu-\muj |
d\muj
X(\mu,\tau1), Y(\mu,\tau1)
\tau1
\tau1
\begin{align} | \partialX(\mu,\tau1) |
\partial\tau1 |
&=Y(\mu,\tau1)\int
1 | |
0 |
d\mu' | |
\mu' |
\Psi(\mu')
Y(\mu',\tau | ||||
|
+
Y(\mu,\tau1) | |
\mu |
&=X(\mu,\tau1)\int
1 | |
0 |
d\mu' | |
\mu' |
\Psi(\mu')Y(\mu',\tau1) \end{align}
1 | |
\int | |
0 |
X(\mu)\Psi(\mu)d\mu=1-
1 | |
\left[1-2\int | |
0 |
\Psi(\mu)d\mu+
1 | |
\left\{\int | |
0 |
Y(\mu)\Psi(\mu)d\mu\right\}2\right]1/2.
1 | |
\int | |
0 |
[X(\mu)+Y(\mu)]\Psi(\mu)d\mu=1.
xn=
1 | |
\int | |
0 |
X(\mu)\Psi(\mu)\mund\mu, yn=
1 | |
\int | |
0 |
Y(\mu)\Psi(\mu)\mund\mu, \alphan=
1 | |
\int | |
0 |
X(\mu)\mund\mu, \betan=
1 | |
\int | |
0 |
Y(\mu)\mund\mu
(1-x0)x2+y0y2+
1 | |
2 |
2) | |
(x | |
1 |
=
1 | |
\int | |
0 |
\Psi(\mu)\mu2d\mu.
y0(x2+y2)+
1 | |
2 |
1 | |
(x | |
0 |
\Psi(\mu)\mu2d\mu
\Psi(\mu)=a+b\mu2
a,b
\alpha | ||||
|
2)] | |
[a(\alpha | |
1 |
X(\mu), Y(\mu)
F(\mu)=X(\mu)+Q\mu[X(\mu)+Y(\mu)], G(\mu)=Y(\mu)+Q\mu[X(\mu)+Y(\mu)]
Q