In atmospheric radiation, Chandrasekhar's H-function appears as the solutions of problems involving scattering, introduced by the Indian American astrophysicist Subrahmanyan Chandrasekhar.[1] [2] [3] [4] [5] The Chandrasekhar's H-function
H(\mu)
0\leq\mu\leq1
H(\mu)=1+\mu
1 | |
H(\mu)\int | |
0 |
\Psi(\mu') | |
\mu+\mu' |
H(\mu')d\mu'
where the characteristic function
\Psi(\mu)
\mu
1\Psi(\mu) | |
\int | |
0 |
d\mu\leq
1 | |
2 |
If the equality is satisfied in the above condition, it is called conservative case, otherwise non-conservative. Albedo is given by
\omegao=2\Psi(\mu)=constant
1 | |
H(\mu) |
=
1\Psi(\mu) | |
\left[1-2\int | |
0 |
d\mu\right]1/2+
1 | |
\int | |
0 |
\mu'\Psi(\mu') | |
\mu+\mu' |
H(\mu')d\mu'
In conservative case, the above equation reduces to
1 | |
H(\mu) |
=
1 | |
\int | |
0 |
\mu'\Psi(\mu') | |
\mu+\mu' |
H(\mu')d\mu'
The H function can be approximated up to an order
n
H(\mu)=
1 | |
\mu1 … \mun |
| ||||||||||
\prod\alpha(1+k\alpha\mu) |
where
\mui
P2n
k\alpha
1=2
n | |
\sum | |
j=1 |
aj\Psi(\muj) | ||||||
|
where
aj
aj=
1 | |
P2n'(\muj) |
1 | |
\int | |
-1 |
P2n(\muj) | |
\mu-\muj |
d\muj
In complex variable
z
H(z)=1-
1 | |
\int | |
0 |
z | |
z+\mu |
H(\mu)\Psi(\mu)d\mu,
1 | |
\int | |
0 |
|\Psi(\mu)|d\mu\leq
1 | |
2 |
,
\delta | |
\int | |
0 |
|\Psi(\mu)|d\mu → 0, \delta → 0
then for
\Re(z)>0
lnH(z)=
1 | |
2\pii |
+iinfty | |
\int | |
-iinfty |
lnT(w)
z | |
w2-z2 |
dw
where the imaginary part of the function
T(z)
z2
z2=u+iv=u (v=0)
T(z)=1-2
1 | |
\int | |
0 |
\Psi(\mu)d\mu-2
1 | |
\int | |
0 |
\mu2\Psi(\mu) | |
u-\mu2 |
d\mu
The above solution is unique and bounded in the interval
0\leqz\leq1
T(z)=0
\pm1/k
H1(z)=H(z)
1+kz | |
1-kz |
1 | |
\int | |
0 |
H(\mu)\Psi(\mu)d\mu=
1\Psi(\mu) | |
1-\left[1-2\int | |
0 |
d\mu\right]1/2
1 | ||
\int | \Psi(\mu)d\mu= | |
0 |
1 | |
2 |
1\Psi(\mu) | |
\left[1-2\int | |
0 |
d\mu\right]1/2
1 | |
\int | |
0 |
H(\mu)\Psi(\mu)\mu2d\mu+
1 | |
2 |
1 | |
\left[\int | |
0 |
H(\mu)\Psi(\mu)\mud\mu\right]2=
1 | |
\int | |
0 |
\Psi(\mu)\mu2d\mu
1 | |
\int | |
0 |
H(\mu)\Psi(\mu)\mud\mu=
1 | |
\left[2\int | |
0 |
\Psi(\mu)\mu2d\mu\right]1/2
\Psi(\mu)=a+b\mu2
a,b
a+b/3\leq1/2
\alphan=
1 | |
\int | |
0 |
H(\mu)\mund\mu, n\geq1
\alpha0=1+
1 | |
2 |
2 | |
(a\alpha | |
0 |
+b
2) | |
\alpha | |
1 |
(a+b\mu2)
| |||||
\int | d\mu'= | ||||
0 |
H(\mu)-1 | |
\muH(\mu) |
-b(\alpha1-\mu\alpha0)