Ceyuan haijing is a treatise on solving geometry problems with the algebra of Tian yuan shu written by the mathematician Li Zhi in 1248 in the time of the Mongol Empire. It is a collection of 692 formula and 170 problems, all derived from the same master diagram of a round town inscribed in a right triangle and a square. They often involve two people who walk on straight lines until they can see each other, meet or reach a tree or pagoda in a certain spot. It is an algebraic geometry book, the purpose of book is to study intricated geometrical relations by algebra.
Majority of the geometry problems are solved by polynomial equations, which are represented using a method called tian yuan shu, "coefficient array method" or literally "method of the celestial unknown". Li Zhi is the earliest extant source of this method, though it was known before him in some form. It is a positional system of rod numerals to represent polynomial equations.
Ceyuan haijing was first introduced to the west by the British Protestant Christian missionary to China, Alexander Wylie in his book Notes on Chinese Literature, 1902. He wrote:
This treatise consists of 12 volumes.
The monography begins with a master diagram called the Diagram of Round Town(圆城图式). It shows a circle inscribed in a right angle triangle and four horizontal lines, four vertical lines.
C: Center of circle:
The North, South, East and West direction in Li Zhi's diagram are opposite to our present convention.
There are a total of fifteen right angle triangles formed by the intersection between triangle TLQ, the four horizontal lines, and four vertical lines.
The names of these right angle triangles and their sides are summarized in the following table
Number | Name | Vertices | Hypotenusec | Verticalb | Horizontala | |
---|---|---|---|---|---|---|
1 | 通 TONG | 天地乾 \triangleTLQ | 通弦(TL天地) | 通股(TQ天乾) | 通勾(LQ地乾) | |
2 | 边 BIAN | 天西川 \triangleTWB | 边弦(TB天川) | 边股(TW天西) | 边勾(WB西川) | |
3 | 底 DI | 日地北 \triangleRDN | 底弦(RL日地) | 底股(RN日北) | 底勾(LB地北) | |
4 | 黄广 HUANGGUANG | 天山金 \triangleTMJ | 黄广弦(TM天山) | 黄广股(TJ天金) | 黄广勾(MJ山金) | |
5 | 黄长 HUANGCHANG | 月地泉 \triangleYLS | 黄长弦(YL月地) | 黄长股(YS月泉) | 黄长勾(LS地泉) | |
6 | 上高 SHANGGAO | 天日旦 \triangleTRD | 上高弦(TR天日) | 上高股(TD天旦) | 上高勾(RD日旦) | |
7 | 下高 XIAGAO | 日山朱 \triangleRMZ | 下高弦(RM日山) | 下高股(RZ日朱) | 下高勾(MZ山朱) | |
8 | 上平 SHANGPING | 月川青 \triangleYSG | 上平弦(YS月川) | 上平股(YG月青) | 上平勾(SG川青) | |
9 | 下平 XIAPING | 川地夕 \triangleBLJ | 下平弦(BL川地) | 下平股(BJ川夕) | 下平勾(LJ地夕) | |
10 | 大差 DACHA | 天月坤 \triangleTYK | 大差弦(TY天月) | 大差股(TK天坤) | 大差勾(YK月坤) | |
11 | 小差 XIAOCHA | 山地艮 \triangleMLH | 小差弦(ML山地) | 小差股(MH山艮) | 小差勾(LH地艮) | |
12 | 皇极 HUANGJI | 日川心 \triangleRSC | 皇极弦(RS日川) | 皇极股(RC日心) | 皇极勾(SC川心) | |
13 | 太虚 TAIXU | 月山泛 \triangleYMF | 太虚弦(YM月山) | 太虚股(YF月泛) | 太虚勾(MF山泛) | |
14 | 明 MING | 日月南 \triangleRYS | 明弦(RY日月) | 明股(RS日南) | 明勾(YS月南) | |
15 | 叀 ZHUAN | 山川东 \triangleMSE | 叀弦(MS山川) | 叀股(ME山东) | 叀勾(SE川东) |
"明差","MING difference" refers to the "difference between the vertical side and horizontal side of MING triangle.
"叀差","ZHUANG difference" refers to the "difference between the vertical side and horizontal side of ZHUANG triangle."
"明差叀差并" means "the sum of MING difference and ZHUAN difference"
(b14-a14)+(b15-a15)
This section (今问正数) lists the length of line segments, the sum and difference and their combinations in the diagram of round town, given that the radius r of inscribe circle is
r=120
a1=320
b1=640
The 13 segments of ith triangle (i=1 to 15) are:
ci
ai
bi
ai+bi
bi-ai
ai+ci
ci-ai
bi+ci
ci-bi
ci+(bi-ai)
ci-(bi-ai)
ai+bi+ci
ai+bi
Among the fifteen right angle triangles, there are two sets of identical triangles:
\triangleTRD
\triangleRMZ
\triangleYSG
\triangleBLJ
a6=a7
b6=b7
c6=c7
a8=a9
b8=b9
c8=c9
There are 15 x 13 =195 terms, their values are shown in Table 1:[1]
(c1-a1)*(c1*b1)
1\over2
(d1)2
a10*b11
1\over2
(d1)2
a13*b1
1\over2
(d1)2
a1*b13
1\over2
(d1)2
b2*b15
(r1)2
a14*a3
(r1)2
a5*b4
(d1)2
a8*b6
a9*b7
=(r1)2
(b14*c14)*(a15+c15)
(r1)2
c6*c8
c7*c9)
a13*b13
a2+b2+c2=b1+c1
a3+b3+c3=a1+c1
a4+b4+c4=2b1
a5+b5+c5=2a1
a6+b6+c6=b1
a7+b7+c7=b1
a8+b8+c8=a1
a9+b9+c9=a1
a10+b10+c10=b1+c1-a1
a11+b11+c11=c1-b1+a1
a12+b12+c12=c1
a13+b13+c13=a1+b1-c1
a14+b14+c14=c1-a1
a15+b15+c15=c1-c1
(b7-a7)+(b8-a8)+(b14-a14)+(b15-a15)=2*(b12-a12)
a8+(b7-a7)+(b8-a8)=b7
Li Zhi derived a total of 692 formula in Ceyuan haijing. Eight of the formula are incorrect, the rest are all correct[4]
From vol 2 to vol 12, there are 170 problems, each problem utilizing a selected few from these formula to form 2nd order to 6th order polynomial equations. As a matter of fact, there are 21 problems yielding third order polynomial equation, 13 problem yielding 4th order polynomial equation and one problem yielding 6th order polynomial[5]
This volume begins with a general hypothesis[6]
Suppose there is a round town, with unknown diameter. This town has four gates, there are two WE direction roads and two NS direction roads outside the gates forming a square surrounding the round town. The NW corner of the square is point Q, the NE corner is point H, the SE corner is point V, the SW corner is K. All the various survey problems are described in this volume and the following volumes. |
All subsequent 170 problems are about given several segments, or their sum or difference, to find the radius or diameter of the round town. All problems follow more or less the same format; it begins with a Question, followed by description of algorithm, occasionally followed by step by step description of the procedure.
\triangleTLQ
Algorithm:
d={2a1 x b1\overa1+b1+c1
={2*320*600\over320+600+\sqrt(3202+6002)}=240
\triangleTWB
From Table 1, 256 =
a2
b2
Algorithm:
{2a2 x b2\overa2+b2+c2
={2*256*480\over256+600+\sqrt(256+6002)}=240
\triangleRDN
{2a3 x b3\overa3+b3+c3
\triangleRSC
{2a12 x b12\overc12
\triangleTWB
{2a x b\overa+b}=d
{2a10 x b10\overb10-a10+c10
{2a11 x b11\overb11-a11+c11
{2a13 x b13\overb13+a13-c13
{2a14 x b14\overc14-a14
{2a15 x b15\overc15-b15
From problem 14 onwards, Li Zhi introduced "Tian yuan one" as unknown variable, and set up two expressions according to Section Definition and formula, then equate these two tian yuan shu expressions. He then solved the problem and obtained the answer.
Question 14:"Suppose a man walking out from West gate and heading south for 480 paces and encountered a tree. He then walked out from the North gate heading east for 200 paces and saw the same tree. What is the radius of the round own?"
Algorithm: Set up the radius as Tian yuan one, place the counting rods representing southward 480 paces on the floor, subtract the tian yuan radius to obtain
:
480-x
元
。
Then subtract tian yuan from eastward paces 200 to obtain:
200-x
元
multiply these two expressions to get:
x2-680x+96000
元
元
that is
x2-680x+96000=2x2
thus:
-x2-680x+96000=0
元
Solve the equation and obtain
r=120
17 problems associated with segment
b2
\triangleTWB
a10
b11
a11
b10
a15
b14
a11
b10
Problem # | GIVEN | x | Equation | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | b2 c4 | direct calculation without tian yuan | |||||||||||||||||||||||||||||||
2 | b2 a11 | d |
x-2b2a11=0 | ||||||||||||||||||||||||||||||
3 | b2 b11 | r |
x-b2b11=0 | ||||||||||||||||||||||||||||||
4 | b2 a15 | d |
| ||||||||||||||||||||||||||||||
5 | b2 a14 | d |
-2a14
=0 | ||||||||||||||||||||||||||||||
6 | b2 a10 | r |
-(b2-c10))x+b2(b2-c10)=0 | ||||||||||||||||||||||||||||||
7 | b2 c2 | r | ((1/2)*c2-(1/2)*b2+b2
-b2
| ||||||||||||||||||||||||||||||
8 | b2 c1 | r |
+b2)+(c1-b2))x-((c1+b2)(c1-b2)-(c1-b2)2))=0 | ||||||||||||||||||||||||||||||
9 | b2 c6 | r |
-2(b2-c5))b2=0 | ||||||||||||||||||||||||||||||
10 | b2 b14 | r |
x+((b2-b14
| ||||||||||||||||||||||||||||||
11 | b2 a10 | r | (2b2-a10)x-b2a10=0 | ||||||||||||||||||||||||||||||
12 | b2 c15 | b15 |
+c15)x-b2c15=0 | ||||||||||||||||||||||||||||||
13 | b2 c14 | a14 |
-c14
-c14)2x
-c14)-b2))b2
| ||||||||||||||||||||||||||||||
14 | b2 c6 | r=\sqrt((2c6-b2)b2) | |||||||||||||||||||||||||||||||
15 | b2 c8 | r |
| ||||||||||||||||||||||||||||||
16 | b2 b14+c14 | calculate with formula for inscribed circle | |||||||||||||||||||||||||||||||
17 | b2 a15+c15 | Calculate with formula forinscribed circle |
17 problems, given
a3
18 problems, given
b1
18 problems.
Q1-11,13-19 given
a1
Q12:given
a1+c3
Q | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Given | a1 | a1 | a1 | a1 | a1 | a1 | a1 | a1 | a1 | a1 | a1 | a1+c3 | a1 | a1 | a1 | a1 | a1 | a1 | |
Second line segment | a15 | b15 | b14 | a14 | a10 | b10 | c11 | c5 | c3 | c1 | c9 | b10-c6 | c14 | c15 | c6 | c12 | a15+b14 | a13 |
18 problems, given two line segments find the diameter of round town[10]
Q | Given | |
---|---|---|
1 | a14 b15 | |
2 | a15 b14 | |
3 | a14 a15 | |
4 | b14 b15 | |
5 | a14 c8 | |
6 | b15 c7 | |
7 | b15 c13 | |
8 | a14 c13 | |
9 | d-a14 d-b15 | |
10 | d-b14 d-a15 | |
11 | c12 a15+b14 | |
12 | a15+b14 c13 | |
13 | b15+c13 c13-b15 | |
14 | a14+b15+c13 a14+b15+c13-a14 | |
15 | c14 d-b15 | |
16 | c5 d-a14 | |
17 | a1-a14 b1-b15 | |
18 | a1+a14 b1-b15 |
17 problems, given three to eight segments or their sum or difference, find diameter of round city.[11]
Q | Given | |
---|---|---|
1 | a14+b14 a15+b15 c12 | |
2 | a14+b14 a15+b15 c13 | |
3 | (c12-a12)+(c12-b12) d14+d15 | |
4 | c15 c14 | |
5 | b14+c14 c15+b15 | |
6 | a15+c15 a14+c14 | |
7 | a1+c1 a15+c15 | |
8 | a1+c1 a14+c14 | |
9 | b1+c1 b15+c15 | |
10 | b1+c1 b14+c14 | |
11 | b14+c14 a15+c15 b14+a15-c13 | |
12 | (b8-a8)+(b2-a2) b14+a15-c13 | |
13 | b7-a8 (b14-a14)+(b15-a15) c12-d | |
14 | (b7-a7)+(b8-a8) (b14-a14)+(b15-a15) | |
15 | a14+b14 a15+b15 | |
16 | a14+a15 b14+b15 |
Given the sum of GAO difference and MING difference is 161 paces and the sum of MING difference and ZHUAN difference is 77 paces. What is the diameter of the round city?
Answer: 120 paces.
Algorithm:[12]
Given
(b7-a7)+(b8-a8)=161
(b14-a14)+(b15-a15)=77
(b7-a7)+(b8-a8)+(b14-a14)+(b15-a15)\over2
=(b12-a12)
b12-a12=
161+77\over2
=119
Let Tian yuan one as the horizontal of SHANGPING (SG):
x=a8
x+161
x+(b7-a7)+(b8-a8)=a8+(b7-a7)+(b8-a8)
=b7
Since
a8+b7=c12
c12=x+b7=2*x+(b7-a7)+(b8-a8)=2*x+161
2=(x+b | |
c | |
7 |
)2=(2*x+161)2=4*x2+644*x+25921
2-(b | |
c | |
12 |
-a12)2
=4*x2+644*x+25921-
((b7-a7)+(b8-a8)+(b14-a14)+(b15-a15))2\over4
=4*x2+644*x+11760=d
d2=(4*x2+644*x+11760)2=16*x4+5152*x3+508816*x2+15146880*x+138297600
Now, multiply the length of RZ by
4*x
4*x*b7=4*x*(x+(b7-a7)+(b8-a8))=4*x*(x+161)=4*x2+644*x
multiply it with the square of RS:
2=4*x*b | |
d | |
7 |
2= | |
*c | |
12 |
(4*x2+644*x)*(4*x2+644*x+25921)=
16*x4+5152*x3+518420*x2+16693124
equate the expressions for the two
d2
thus
16*x4+5152*x3+518420*x2+16693124=
16*x4+5152*x3+508816*x2+15146880*x+138297600
We obtain:
9604*x2+1546244*x-138297600=0
solve it and we obtain
x=a8=64
This matches the horizontal of SHANGPING 8th triangle in
Problems | given | |
---|---|---|
1 | a12+b12+c12 b12-a12 | |
2 | c1 b1-a1 | |
3 | c1 a10+b11 | |
4 | c1 a2+b3 |
Problems | given | |
---|---|---|
1 | a1+b1 a2 b3 | |
2 | a1+b1 c13+b13-a13 c13-b13+a13 | |
3 | a1+b1 a11+b11 a10+b10 | |
4 | a1+b1 c10-a10 c11-b11 | |
5 | a1+b1 c6+c8 c6-c8 | |
6 | a1+b1 c10 c11 | |
7 | a1+b1 c4 c5 | |
8 | a1+b1 c2 c3 |
8 problems[14]
Problem | Given | |
---|---|---|
1 | a1+b1+c1 c1-b1 | |
2 | a1+b1+c1 c1-a1 | |
3 | a1+b1+c1 b1-a1 | |
4 | a1+b1+c1 (c1-b1)+(c1-a1) | |
5 | a1+b1+c1 (c1-b1)+(b1-a1)+(c1-a1) | |
6 | a1+b1+c1 d14+d15 | |
7 | a1+b1+c1 c12 | |
8 | a1+b1+c1 c13 |
:Miscellaneous 18 problems:[15]
Q | GIVEN | |
---|---|---|
1 | c2 c3 | |
2 | c5 c4 | |
3 | b11 c4 | |
4 | a10 c3 | |
5 | a10 b11 | |
6 | b7 a8 | |
7 | b1-b11 a1-a10 | |
8 | b10-a10 b11-a{11} | |
9 | c13 a10-b11 | |
10 | a12+b12 a13+b13 | |
11 | c1 b1\overa1 | |
12 | d10-d11 d12-d13 | |
13 | c12-[c10-(b10-a10)] c11+(b11-a11)-c13 b12-a12 | |
14 | c8-(c1-b1) (c1-a1)-c7 | |
15 | a1+c1 (c1-a1)+(c1-b1) | |
16 | a12+b12+c12 (a13+b13)-c13 | |
17 | From the book Dongyuan jiurong | |
18 | From Dongyuan jiurong |
14 problems on fractions[16]
Problem | given | |
---|---|---|
1 | b1+c1 a1 8\over15 b1 | |
2 | a1+c1 a1 8\over15 b1 | |
3 | a1=(1-5/9)*3d b1-a1 | |
4 | a3=(5/6)*d b2-a3 | |
5 | (15/16)b1=d a1+b1 | |
6 | a12=(8/15)*b12 c12-b12 c12-a12 | |
7 | c1 d=(1/2)b2 a3=(5/6)d | |
8 | b2+a3+c2 b2=(12/17)c1 a3=(5/17)c1 | |
9 | a3+(5/6)b2 b2+(3/5)a3 | |
10 | a11+(1/3)b10 b10-(3/4)a11 | |
11 | b1-d=(3/5)b1 a1-d=(1/4)a1 (b1-d)-(a1-d) | |
12 | b1-d=(3/5)b1 a1-d=(1/4)a1 (1/5)b1-(1/4)a1 | |
13 | b14=(1-(15/24)b10) a15=(1-(4/5))a11 b14-a15 b10-a11 | |
14 | a1+b1+c1 (b1/a1)=8(1/3) (a1/b15)=10(2/3) a14-a13 b13-b15 |
In 1913, French mathematician L. van Hoe wrote an article about Ceyuan haijing. In 1982, K. Chemla Ph.D. thesis Etude du Livre Reflects des Mesuers du Cercle sur la mer de Li Ye. 1983, University of Singapore Mathematics Professor Lam Lay Yong: Chinese Polynomial Equations in the Thirteenth Century。
a9*b7=r2
a8=a9
a8*b7=r2
a8
b7