Cerebral blood volume explained

Cerebral blood volume is the blood volume in a given amount of brain tissue.[1]

Pathophysiology

The typical human adult's skull contains approximately 1500 grams of the brain (including gray matter and white matter), 100-130 milliliters of blood, and 75 milliliters of cerebrospinal fluid. About 15% of the blood volume is present in the arteries, 40% in the veins, and 45% in the nerve tissue and capillaries.[2]

There is a difference between the cerebral blood volume of gray and white matter. The cerebral blood volume value of gray matter is about 3.5 +/- 0.4 ml/100g, and the white matter is about 1.7 +/- 0.4 ml/100g. The gray matter is nearly twice that of white matter.[3] In both white and gray matter, cerebral blood volume decreases by about 0.50% per year with increasing age.[4] Intracranial hematoma and Intracerebral hemorrhage (ICH) will cause an increase in cerebral blood volume.[5] Ischemic stroke will cause a substantial reduction in cerebral blood volume.[6]

Measurement methods

Magnetic resonance imaging

The cerebral blood volume maps can be calculated by dynamic magnetic resonance image set obtained by echo planar imaging after intravenous injection of thiol contrast agent.[7] Planar imaging techniques or single high-speed shots provide the necessary resolution for contrast agents to display rapid brain blood movements.[8] These magnetic resonance cerebral blood volume imaging methods can be applied to academic research of normal human brain activities and clinical studies of patients with brain tumors.[9] [10]

Emission computed tomography

In vivo studies using emission computed tomography gave coefficients of variation for regional cerebral blood volume and cross-sectional cerebral blood volume over 80 minutes.[11] A clear tomographic depiction of cerebral blood volume distribution in human subjects can achieve by using emission computed tomography, which provides real-time measurements of the cerebral hemodynamic parameters.[12] Carbon monoxide administered by a single inhalation is a reliable and accurate blood tracer for measuring cerebral blood volume with emission computed tomography.[13] [14]

Synchrotron radiation computed tomography

Synchrotron Radiation Computed Tomography uses a monochromatic and parallel X-ray beam to measure the value of cerebral blood volume. It allows the sample to be placed away from the detector, thereby avoiding scattering effects.[15] This technique measures absolute contrast concentration with relatively high precision and spatial resolution. Cerebral blood volume measurements are based on methods used in dynamic computed tomography. After a large dose of iodinated contrast agent was injected into the brain tissue, the temporal change in iodine concentration was compared to changes in cerebral arterial input. It is a new method for studying hemodynamic changes in brain pathophysiology, including clinical studies of cerebrovascular diseases or brain tumors.[16]

CT perfusion

Cerebral blood volume is one of the parameters that is assessed with CT perfusion, often as part of Ischemic stroke evaluation.[17] [18]

Cerebral blood flow

Cerebral blood volume has a close and positive correlation with cerebral blood flow. Both cerebral blood volume and cerebral blood flow depend on several important parameters, including cerebrovascular resistance, intracranial pressure, and mean arterial pressure. The ratio between cerebral blood flow and cerebral blood volume can be an accurate predictor of decreased cerebral perfusion pressure, thereby predicting cerebral circulation.[19] [20]

Notes and References

  1. Leenders. K. L.. Perani. D.. Lammertsma. A. A.. Heather. J. D.. Buckingham. P.. Jones. T.. Healy. M. J. R.. Gibbs. J. M.. Wise. R. J. S.. 1990. Cerebral Blood Flow, Blood Volume and Oxygen Utilization. Brain. 113. 1. 27–47. 10.1093/brain/113.1.27. 2302536. 0006-8950.
  2. Kaisti. Kaike K.. Långsjö. Jaakko W.. Aalto. Sargo. Oikonen. Vesa. Sipilä. Hannu. Teräs. Mika. Hinkka. Susanna. Metsähonkala. Liisa. Scheinin. Harry. September 2003. Effects of Sevoflurane, Propofol, and Adjunct Nitrous Oxide on Regional Cerebral Blood Flow, Oxygen Consumption, and Blood Volume in Humans. Anesthesiology. English. 99. 3. 603–613. 10.1097/00000542-200309000-00015. 12960544. 6091820. 0003-3022. free.
  3. Jin. Tao. Kim. Seong-Gi. October 2008. Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. NeuroImage. 43. 1. 1–9. 10.1016/j.neuroimage.2008.06.029. 1053-8119. 2579763. 18655837.
  4. Swain. R.A. Harris. A.B. Wiener. E.C. Dutka. M.V. Morris. H.D. Theien. B.E. Konda. S. Engberg. K. Lauterbur. P.C. April 2003. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 117. 4. 1037–1046. 10.1016/s0306-4522(02)00664-4. 12654355. 41517027. 0306-4522.
  5. Mandeville. Joseph B.. Marota. John J. A.. Kosofsky. Barry E.. Keltner. John R.. Weissleder. Ralph. Rosen. Bruce R.. Weisskoff. Robert M.. April 1998. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magnetic Resonance in Medicine. 39. 4. 615–624. 10.1002/mrm.1910390415. 9543424. 23060386. 0740-3194.
  6. Derdeyn. C. P.. Videen. T. O.. Yundt. K. D.. Fritsch. S. M.. Carpenter. D. A.. Grubb. R. L.. Powers. W. J.. 2002-03-01. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 125. 3. 595–607. 10.1093/brain/awf047. 11872616. 0006-8950. free.
  7. Blamire. A. M.. Anthony. D. C.. Rajagopalan. B.. Sibson. N. R.. Perry. V. H.. Styles. P.. 2000-11-01. Interleukin-1β-Induced Changes in Blood–Brain Barrier Permeability, Apparent Diffusion Coefficient, and Cerebral Blood Volume in the Rat Brain: A Magnetic Resonance Study. Journal of Neuroscience. 20. 21. 8153–8159. 10.1523/JNEUROSCI.20-21-08153.2000. 0270-6474. 11050138. 6772751. free.
  8. Grandin. Cécile B.. Duprez. Thierry P.. Smith. Anne M.. Mataigne. Fréderic. Peeters. André. Oppenheim. Catherine. Cosnard. Guy. May 2001. Usefulness of Magnetic Resonance–Derived Quantitative Measurements of Cerebral Blood Flow and Volume in Prediction of Infarct Growth in Hyperacute Stroke. Stroke. 32. 5. 1147–1153. 10.1161/01.str.32.5.1147. 11340224. 0039-2499.
  9. Østergaard. Leif. Smith. Donald F.. Vestergaard-Poulsen. Peter. Hansen. SørenB.. Gee. Antony D.. Gjedde. Albert. Gyldensted. Carsten. April 1998. Absolute Cerebral Blood Flow and Blood Volume Measured by Magnetic Resonance Imaging Bolus Tracking: Comparison with Positron Emission Tomography Values. Journal of Cerebral Blood Flow & Metabolism. 18. 4. 425–432. 10.1097/00004647-199804000-00011. 9538908. 0271-678X. free.
  10. Rosen. B. R.. Belliveau. J. W.. Aronen. H. J.. Kennedy. D.. Buchbinder. B. R.. Fischman. A.. Gruber. M.. Glas. J.. Weisskoff. R. M.. December 1991. Susceptibility contrast imaging of cerebral blood volume: Human experience. Magnetic Resonance in Medicine. 22. 2. 293–299. 10.1002/mrm.1910220227. 1812360. 33265376. 0740-3194.
  11. Braun. H.. Ferbert. A.. Stirner. H.. Weiller. C.. Ringelstein. E. B.. Buell. U.. 1988. Combined SPECT Imaging of Regional Cerebral Blood Flow (99mTc-HexamethylPropyleneamine Oxime, HMPAO) and Blood Volume (99mTc-RBC) to Assess Regional Cerebral Perfusion Reserve in Patients with Cerebrovascular Disease. Nuklearmedizin. 27. 2. 51–56. 10.1055/s-0038-1629503. 3259313. 0029-5566.
  12. Ito. Hiroshi. Kanno. Iwao. Ibaraki. Masanobu. Hatazawa. Jun. Miura. Shuichi. June 2003. Changes in Human Cerebral Blood Flow and Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission Tomography. Journal of Cerebral Blood Flow & Metabolism. 23. 6. 665–670. 10.1097/01.wcb.0000067721.64998.f5. 12796714. 0271-678X.
  13. Lassen. N. A.. June 1984. Cerebral Blood Flow and Blood Volume Tomography by SPECT in Cerebrovascular Disease. Clinical Neuropharmacology. English. 7. S283. 10.1097/00002826-198406001-00256. 0362-5664.
  14. Martin. W. R. Wayne. Powers. William J.. Raichle. Marcus E.. August 1987. Cerebral Blood Volume Measured with Inhaled C15O and Positron Emission Tomography. Journal of Cerebral Blood Flow & Metabolism. 7. 4. 421–426. 10.1038/jcbfm.1987.85. 3497162. 0271-678X. free.
  15. Adam. Jean-Fran??ois. Elleaume. H??l??ne. Le Duc. G??raldine. Corde. St??phanie. Charvet. Anne-Marie. Tropr??s. Ir??ne. Le Bas. Jean-Fran??ois. Est??ve. Fran??ois. April 2003. Absolute Cerebral Blood Volume and Blood Flow Measurements Based on Synchrotron Radiation Quantitative Computed Tomography. Journal of Cerebral Blood Flow & Metabolism. 23. 4. 499–512. 10.1097/00004647-200304000-00014. 12679727. 0271-678X.
  16. Sakai. Fumihiko. Nakazawa. Keiji. Tazaki. Yoshiaki. Ishii. Katsumi. Hino. Hidetada. Igarashi. Hisaka. Kanda. Tadashi. June 1985. Regional Cerebral Blood Volume and Hematocrit Measured in Normal Human Volunteers by Single-Photon Emission Computed Tomography. Journal of Cerebral Blood Flow & Metabolism. 5. 2. 207–213. 10.1038/jcbfm.1985.27. 3921557. 0271-678X. free.
  17. Demeestere. Jelle. Wouters. Anke. Christensen. Soren. Lemmens. Robin. Lansberg. Maarten G.. March 2020. Review of Perfusion Imaging in Acute Ischemic Stroke: From Time to Tissue. Stroke. 51. 3. 1017–1024. 10.1161/STROKEAHA.119.028337. 1524-4628. 32008460. free.
  18. Konstas. A. A.. Goldmakher. G. V.. Lee. T.-Y.. Lev. M. H.. April 2009. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. AJNR. American Journal of Neuroradiology. 30. 4. 662–668. 10.3174/ajnr.A1487. 1936-959X. 7051780. 19270105.
  19. Grubb. Robert L.. Raichle. Marcus E.. Eichling. John O.. Ter-Pogossian. Michel M.. September 1974. The Effects of Changes in Pa CO 2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time. Stroke. 5. 5. 630–639. 10.1161/01.str.5.5.630. 4472361. 0039-2499. free.
  20. Todd. Nicholas V.. Picozzi. Piero. Crockard. H. Alan. June 1986. Quantitative Measurement of Cerebral Blood Flow and Cerebral Blood Volume after Cerebral Ischaemia. Journal of Cerebral Blood Flow & Metabolism. 6. 3. 338–341. 10.1038/jcbfm.1986.57. 3711160. 0271-678X. free.