In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy,[1] but remained relatively unknown until Hadamard rediscovered it.[2] Hadamard's first publication of this result was in 1888;[3] he also included it as part of his 1892 Ph.D. thesis.[4]
Consider the formal power series in one complex variable z of the formwhere
a,cn\in\Complex.
R
Without loss of generality assume that
a=0
|z|<R
|z|>R
First suppose
|z|<R
t=1/R
0
\pminfty.
\varepsilon>0
n
|cn|\leq(t+\varepsilon)n
cn
|z|<1/(t+\varepsilon)
Conversely, for
\varepsilon>0
|cn|\geq(t-\varepsilon)n
cn
|z|=1/(t-\varepsilon)>R
Let
\alpha
\alpha=(\alpha1, … ,\alphan)\in\Nn
||\alpha||=\alpha1+ … +\alphan
f(x)
\rho=(\rho1, … ,\rhon)\in\Rn
\rho\alpha=
\alpha1 | |
\rho | |
1 |
…
\alphan | |
\rho | |
n |
From
Set
z=a+t\rho
(zi=ai+t\rhoi)
\sum\alphac\alpha(z-a)\alpha=\sum\alphac\alpha\rho\alphat||\alpha||=\sum\mu\left(\sum||\alpha|||c\alpha|\rho\alpha\right)t\mu
This is a power series in one variable
t
|t|<1
|t|>1
\limsup\mu\sqrt[\mu]{\sum||\alpha|||c\alpha|\rho\alpha}=1
Setting
|cm|\rhom=max||\alpha|||c\alpha|\rho\alpha
|cm|\rhom\leq\sum||\alpha|||c\alpha|\rho\alpha\leq(\mu+1)n|cm|\rhom
Because
\sqrt[\mu]{(\mu+1)n}\to1
\mu\toinfty
\sqrt[\mu]{|cm|\rhom}\leq\sqrt[\mu]{\sum||\alpha|||c\alpha|\rho\alpha}\leq\sqrt[\mu]{|cm|\rhom}\implies\sqrt[\mu]{\sum||\alpha|||c\alpha|\rho\alpha}=\sqrt[\mu]{|cm|\rhom} (\mu\toinfty)
Therefore
\limsup||\alpha||\toinfty
\alpha} | |
\sqrt[||\alpha||]{|c | |
\alpha|\rho |
=\limsup\mu\sqrt[\mu]{|cm|\rhom}=1