In combinatorial mathematics, Catalan's triangle is a number triangle whose entries
C(n,k)
C(n,k)
C(n,0)=1forn\geq0
C(n,1)=nforn\geq1
C(n+1,k)=C(n+1,k-1)+C(n,k)for1<k<n+1
C(n+1,n+1)=C(n+1,n)forn\geq1
Shapiro[3] introduces another triangle which he calls the Catalan triangle that is distinct from the triangle being discussed here.
The general formula for
C(n,k)
C(n,k)=\binom{n+k}{k}-\binom{n+k}{k-1}
C(n,k)=
n-k+1 | |
n+1 |
\binom{n+k}{k}
When
k=n
The row sum of the -th row is the -th Catalan number, using the hockey-stick identity and an alternative expression for Catalan numbers.
Some values are given by[5]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | |||||||||
1 | 1 | 1 | ||||||||
2 | 1 | 2 | 2 | |||||||
3 | 1 | 3 | 5 | 5 | ||||||
4 | 1 | 4 | 9 | 14 | 14 | |||||
5 | 1 | 5 | 14 | 28 | 42 | 42 | ||||
6 | 1 | 6 | 20 | 48 | 90 | 132 | 132 | |||
7 | 1 | 7 | 27 | 75 | 165 | 297 | 429 | 429 | ||
8 | 1 | 8 | 35 | 110 | 275 | 572 | 1001 | 1430 | 1430 |
C(n,k)=
k | |
\sum | |
i=0 |
C(n-1,i)=
n | |
\sum | |
i=k |
C(i,k-1)
That is, an entry is the partial sum of the above row and also the partial sum of the column to the left (except for the entry on the diagonal).
k>n
C(n,k)=0
(n,k-1)
(4,2)=9
1111,1112,1113,1122,1123,1133,1222,1223,1233
Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order is a number trapezoid whose entries
Cm(n,k)
C1(n,k)=C(n,k)
Some values of Catalan's trapezoid of order are given by
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | ||||||||
1 | 1 | 2 | 2 | |||||||
2 | 1 | 3 | 5 | 5 | ||||||
3 | 1 | 4 | 9 | 14 | 14 | |||||
4 | 1 | 5 | 14 | 28 | 42 | 42 | ||||
5 | 1 | 6 | 20 | 48 | 90 | 132 | 132 | |||
6 | 1 | 7 | 27 | 75 | 165 | 297 | 429 | 429 | ||
7 | 1 | 8 | 35 | 110 | 275 | 572 | 1001 | 1430 | 1430 |
Some values of Catalan's trapezoid of order are given by
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | ||||||||
1 | 1 | 2 | 3 | 3 | |||||||
2 | 1 | 3 | 6 | 9 | 9 | ||||||
3 | 1 | 4 | 10 | 19 | 28 | 28 | |||||
4 | 1 | 5 | 15 | 34 | 62 | 90 | 90 | ||||
5 | 1 | 6 | 21 | 55 | 117 | 207 | 297 | 297 | |||
6 | 1 | 7 | 28 | 83 | 200 | 407 | 704 | 1001 | 1001 | ||
7 | 1 | 8 | 36 | 119 | 319 | 726 | 1430 | 2431 | 3432 | 3432 |
A general formula for
Cm(n,k)
Cm(n,k)=\begin{cases} \left(\begin{array}{c} n+k\\ k \end{array}\right)&0\leqk<m\\ \\ \left(\begin{array}{c} n+k\\ k \end{array}\right)-\left(\begin{array}{c} n+k\\ k-m \end{array}\right)&m\leqk\leqn+m-1\\ \\ 0&k>n+m-1 \end{cases}
This proof involves an extension of Andre's reflection method as used in the second proof for the Catalan number to different diagonals. The following shows how every path from the bottom left
(0,0)
(k,n)
n-k+m-1=0
(n+m,k-m)
We consider three cases to determine the number of paths from
(0,0)
(k,n)
(1) when
m>k
(0,0)
(k,n)
Cm(n,k)=\left(\begin{array}{c} n+k\\ k \end{array}\right)
(2) when
k-m+1>n
Cm(n,k)=0
(3) when
m\leqk\leqn+m-1
Cm(n,k)
\left(\begin{array}{c} n+k\\ k \end{array}\right)
\left(\begin{array}{c} (n+m)+(k-m)\\ k-m \end{array}\right)=\left(\begin{array}{c} n+k\\ k-m \end{array}\right)
Therefore the number of paths from
(0,0)
(k,n)
n-k+m-1=0
Firstly, we confirm the validity of the recurrence relation
Cm(n,k)=Cm(n-1,k)+Cm(n,k-1)
Cm(n,k)
Cm(n-1,k)
Cm(n,k-1)
Cm(n,0)
Cm(0,k)