In mathematics, Cartan's lemma refers to a number of results named after either Élie Cartan or his son Henri Cartan:
v1\wedgew1+ … +vp\wedgewp=0
in ΛV. Then there are scalars hij = hji such that
wi=
p | |
\sum | |
j=1 |
hijvj.
\begin{align} K1&=\{z1=x1+iy1|a2<x1<a3,b1<y1<b2\}\\ K1'&=\{z1=x1+iy1|a1<x1<a3,b1<y1<b2\}\\ K1''&=\{z1=x1+iy1|a2<x1<a4,b1<y1<b2\} \end{align}
so that
K1=K1'\capK1''
\begin{align} K&=K1 x K2 x … x Kn\\ K'&=K1' x K2 x … x Kn\\ K''&=K1'' x K2 x … x Kn \end{align}
so that again
K=K'\capK''
F'
K'
F''
K''
F(z)=F'(z)F''(z)
in K.